-
2
-
-
84931162639
-
The condensed nearest neighbor rule
-
Hart P. The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14 5 (1968) 515-516
-
(1968)
IEEE Trans. Inf. Theory
, vol.14
, Issue.5
, pp. 515-516
-
-
Hart, P.1
-
3
-
-
0001899045
-
Improved heterogeneous distance functions
-
Wilson D.R., and Martinez T.R. Improved heterogeneous distance functions. J. Artif. Intell. Res. 6 1 (1997) 1-34
-
(1997)
J. Artif. Intell. Res.
, vol.6
, Issue.1
, pp. 1-34
-
-
Wilson, D.R.1
Martinez, T.R.2
-
4
-
-
0040788584
-
Nearest neighbour editing and condensing tools-synergy exploitation
-
Dasarathy B.V., Sánchez J.S., and Townsend S. Nearest neighbour editing and condensing tools-synergy exploitation. Pattern Anal. Appl. 3 1 (2000) 19-30
-
(2000)
Pattern Anal. Appl.
, vol.3
, Issue.1
, pp. 19-30
-
-
Dasarathy, B.V.1
Sánchez, J.S.2
Townsend, S.3
-
6
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Lee D., and Seung H. Learning the parts of objects by non-negative matrix factorization. Nature 401 6755 (1999) 788-791
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.1
Seung, H.2
-
7
-
-
34247646816
-
-
C.-Y. Liou, K.-D.O. Yang, Unsupervised classification of remote sensing imagery with non-negative matrix factorization, Proceedings of the Twelfth International Conference on Neural Inf. Proc., Taipei, Taiwan, 30 October-2 November 2005.
-
-
-
-
8
-
-
33646424384
-
-
O. Okun, H. Priisalu, Fast nonnegative matrix factorization and its application for protein fold recognition, EURASIP J. Appl. Signal Process(Article ID 71817) (2006) 8, 〈http://www.hindawi.com/GetArticle.aspx?doi=10.1155/ASP/2006/71817〉.
-
-
-
-
9
-
-
33750620445
-
Initialization enhancer for nonnegative matrix factorization
-
Zheng Z., Yang J., and Zhu Y. Initialization enhancer for nonnegative matrix factorization. Eng. Appl. Artif. Intell. 20 1 (2007) 101-110
-
(2007)
Eng. Appl. Artif. Intell.
, vol.20
, Issue.1
, pp. 101-110
-
-
Zheng, Z.1
Yang, J.2
Zhu, Y.3
-
10
-
-
33749255098
-
-
C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, Proceedings of the SIAM International Conference on Data Mining, Newport Beach, CA, 21-23 April 2005, pp. 606-610.
-
-
-
-
11
-
-
33646411744
-
-
C. Ding, X. He, H.D. Simon, Nonnegative Lagrangian relaxation of K-means and spectral clustering, Proceedings of the Sixteenth European Conference on Machine Learning, Porto, Portugal, 3-7 October 2005, pp. 530-538.
-
-
-
-
12
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum J.B., de Silva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 5500 (2000) 2319-2323
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Silva, V.2
Langford, J.C.3
|