메뉴 건너뛰기




Volumn 40, Issue 1, 2007, Pages 1-14

Auditory brainstem response classification: A hybrid model using time and frequency features

Author keywords

Auditory brainstem response; Classification; Decision support; Feature selection; Hybrid model

Indexed keywords

ACOUSTIC WAVES; BIOELECTRIC POTENTIALS; CLASSIFICATION (OF INFORMATION); DATABASE SYSTEMS; DECISION SUPPORT SYSTEMS; FEATURE EXTRACTION; NEUROLOGY; SENSORY PERCEPTION; SOFTWARE ENGINEERING;

EID: 34247534921     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2006.07.001     Document Type: Article
Times cited : (19)

References (36)
  • 2
    • 0014802929 scopus 로고
    • Volume conducted potentials in response to auditory stimuli as detected by averaging in the cat
    • Elsevier, Amsterdam p. 609-18
    • Jewett D.L. Volume conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroencephalography and clinical neurophysiology (Suppl.) vol. 28 (1970), Elsevier, Amsterdam p. 609-18
    • (1970) Electroencephalography and clinical neurophysiology (Suppl.) , vol.28
    • Jewett, D.L.1
  • 3
    • 0001033172 scopus 로고    scopus 로고
    • Brain stem auditory evoked potentials: interpretation
    • Chiappa K.H. (Ed), Lippincott-Raven Publishers, Philadelphia
    • Chiappa K.H., and Hill R.A. Brain stem auditory evoked potentials: interpretation. In: Chiappa K.H. (Ed). Evoked potentials in clinical medicine (1997), Lippincott-Raven Publishers, Philadelphia 199-229
    • (1997) Evoked potentials in clinical medicine , pp. 199-229
    • Chiappa, K.H.1    Hill, R.A.2
  • 4
    • 0001033172 scopus 로고    scopus 로고
    • Brain stem auditory evoked potentials: methodology
    • Chiappa K.H. (Ed), Lippincott-Raven Publishers, Philadelphia
    • Chiappa K.H. Brain stem auditory evoked potentials: methodology. In: Chiappa K.H. (Ed). Evoked potentials in clinical medicine (1997), Lippincott-Raven Publishers, Philadelphia 157-198
    • (1997) Evoked potentials in clinical medicine , pp. 157-198
    • Chiappa, K.H.1
  • 5
    • 0027002257 scopus 로고
    • Auditory brainstem evoked potential classification for threshold detection by neural networks. 1. Network design, similarities between human-expert and network classification, feasibility
    • Alpsan D., and Ozdamar O. Auditory brainstem evoked potential classification for threshold detection by neural networks. 1. Network design, similarities between human-expert and network classification, feasibility. Automedica 15 (1992) 67-82
    • (1992) Automedica , vol.15 , pp. 67-82
    • Alpsan, D.1    Ozdamar, O.2
  • 6
    • 0346801632 scopus 로고
    • Four-channel ABR recordings: consistency in interpretation
    • Pratt T.L., Olsen W.O., and Bauch C.D. Four-channel ABR recordings: consistency in interpretation. Am J Audiol 4 (1995) 47-54
    • (1995) Am J Audiol , vol.4 , pp. 47-54
    • Pratt, T.L.1    Olsen, W.O.2    Bauch, C.D.3
  • 7
    • 0026962635 scopus 로고
    • Auditory brainstem evoked potential classification for threshold detection by neural networks. 2. Effects of input coding, training set size, and composition and network size on performance
    • Alpsan D., and Ozdamar O. Auditory brainstem evoked potential classification for threshold detection by neural networks. 2. Effects of input coding, training set size, and composition and network size on performance. Automedica 15 (1992) 83-93
    • (1992) Automedica , vol.15 , pp. 83-93
    • Alpsan, D.1    Ozdamar, O.2
  • 8
    • 0027377622 scopus 로고
    • Identification of peak V in brainstem auditory evoked potentials with neural networks
    • Habraken J.B.A., van Gils M.J., and Cluitmans P.J.M. Identification of peak V in brainstem auditory evoked potentials with neural networks. Comput Biol Med 23 (1993) 369-380
    • (1993) Comput Biol Med , vol.23 , pp. 369-380
    • Habraken, J.B.A.1    van Gils, M.J.2    Cluitmans, P.J.M.3
  • 9
    • 84887350108 scopus 로고    scopus 로고
    • Classification of brainstem auditory evoked potentials using artificial neural networks
    • Brender J., Christensen J.P., Scherrer J.R., and McNair P. (Eds), IOS Press, Amsterdam
    • McCullagh P.J., King G., McAllister H.G., and Houston H.G. Classification of brainstem auditory evoked potentials using artificial neural networks. In: Brender J., Christensen J.P., Scherrer J.R., and McNair P. (Eds). Proceedings of the medical informatics Europe '96 (1996), IOS Press, Amsterdam 547-550
    • (1996) Proceedings of the medical informatics Europe '96 , pp. 547-550
    • McCullagh, P.J.1    King, G.2    McAllister, H.G.3    Houston, H.G.4
  • 10
    • 0028166879 scopus 로고
    • Automated auditory brainstem response interpretation
    • Delgado R.E., and Ozdamar O. Automated auditory brainstem response interpretation. IEEE Eng Med Biol (1994) 227-237
    • (1994) IEEE Eng Med Biol , pp. 227-237
    • Delgado, R.E.1    Ozdamar, O.2
  • 11
    • 0036271411 scopus 로고    scopus 로고
    • Objective detection of brainstem auditory evoked potentials with a priori information from higher presentation levels
    • Vannier E., Adam O., and Motsch J.F. Objective detection of brainstem auditory evoked potentials with a priori information from higher presentation levels. Artif Intell Med 25 (2002) 283-301
    • (2002) Artif Intell Med , vol.25 , pp. 283-301
    • Vannier, E.1    Adam, O.2    Motsch, J.F.3
  • 12
    • 0028397994 scopus 로고
    • Automated electrophysiologic hearing testing using a threshold-seeking algorithm
    • Ozdamar O., Delgado R.E., Eilers R.E., and Urbano R.C. Automated electrophysiologic hearing testing using a threshold-seeking algorithm. J Am Acad Audiol 5 (1994) 77-88
    • (1994) J Am Acad Audiol , vol.5 , pp. 77-88
    • Ozdamar, O.1    Delgado, R.E.2    Eilers, R.E.3    Urbano, R.C.4
  • 13
    • 31044432611 scopus 로고    scopus 로고
    • Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection
    • Aci{dotless}r N., Özdamar O., and Güzelis C. Automatic classification of auditory brainstem responses using SVM-based feature selection algorithm for threshold detection. J Eng Appl Artif Intell 19 (2006) 209-218
    • (2006) J Eng Appl Artif Intell , vol.19 , pp. 209-218
    • Acir, N.1    Özdamar, O.2    Güzelis, C.3
  • 15
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Mach Learning 1 (1986) 81-106
    • (1986) Mach Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 16
    • 34247465405 scopus 로고    scopus 로고
    • SPSS Inc., Clementine Data Mining Software, referred to at: http://www.spss.com (Accessed: May 26, 2006).
  • 18
    • 84952123398 scopus 로고
    • A theory of cross-validation error
    • Turney P.D. A theory of cross-validation error. J Exp Theor Artif Intell 6 (1994) 361-391
    • (1994) J Exp Theor Artif Intell , vol.6 , pp. 361-391
    • Turney, P.D.1
  • 19
    • 0642371104 scopus 로고    scopus 로고
    • Genomic data sampling and its effect on classification performance assessment
    • Azuaje F. Genomic data sampling and its effect on classification performance assessment. BMC Bioinform 4 (2003) 1-14
    • (2003) BMC Bioinform , vol.4 , pp. 1-14
    • Azuaje, F.1
  • 20
    • 34247532684 scopus 로고    scopus 로고
    • Ho TK. A theory of multiple classifier systems and its application to visual word recognition. Ph.D. Thesis, SUNY at Buffalo; 1992.
  • 22
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • Xu L., Krzyzak A., and Suen C.Y. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans Syst Man Cybernet 22 (1992) 418-435
    • (1992) IEEE Trans Syst Man Cybernet , vol.22 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 25
    • 34247537037 scopus 로고    scopus 로고
    • Nugent CD. An intelligent framework for the classification of the ECG, Ph.D. Thesis, University of Ulster at Jordanstown, Northern Ireland, 1998.
  • 27
    • 34247464979 scopus 로고    scopus 로고
    • The Dempster-Shafer theory of evidence
    • Physica-Verlag, Heidelberg p. 118-58
    • Liu W. The Dempster-Shafer theory of evidence. Propositional, probabilistic and evidential reasoning vol. 77 (2001), Physica-Verlag, Heidelberg p. 118-58
    • (2001) Propositional, probabilistic and evidential reasoning , vol.77
    • Liu, W.1
  • 28
    • 0001655091 scopus 로고
    • A generalization of Bayesian interest
    • Dempster A.P. A generalization of Bayesian interest. J R Statist Soc (1968) 205-247
    • (1968) J R Statist Soc , pp. 205-247
    • Dempster, A.P.1
  • 30
    • 0031075696 scopus 로고    scopus 로고
    • Approximate reasoning and evidence theory
    • Guan J.W., and Bell D.A. Approximate reasoning and evidence theory. Inform Sci 96 (1997) 207-235
    • (1997) Inform Sci , vol.96 , pp. 207-235
    • Guan, J.W.1    Bell, D.A.2
  • 31
    • 0002600768 scopus 로고
    • A framework for evidential-reasoning systems
    • Shafer G., and Pearl J. (Eds), Morgan Kaufmann Publishers Inc., California
    • Lowrance J.D., Garvey T.D., and Strat T.M. A framework for evidential-reasoning systems. In: Shafer G., and Pearl J. (Eds). Readings in uncertain reasoning (1986), Morgan Kaufmann Publishers Inc., California 611-648
    • (1986) Readings in uncertain reasoning , pp. 611-648
    • Lowrance, J.D.1    Garvey, T.D.2    Strat, T.M.3
  • 33
    • 84860403748 scopus 로고    scopus 로고
    • Feature and classifier fusion for 12-lead ECG classification
    • Nugent C.D., Webb J.A.C., and Black N.D. Feature and classifier fusion for 12-lead ECG classification. Med Inform Internet Med 25 (2000) 225-235
    • (2000) Med Inform Internet Med , vol.25 , pp. 225-235
    • Nugent, C.D.1    Webb, J.A.C.2    Black, N.D.3
  • 34
    • 0036363470 scopus 로고    scopus 로고
    • Receiver operating characteristic (ROC) curves
    • O'Connell B., and Myers H. Receiver operating characteristic (ROC) curves. J Clin Nursing 11 (2002) 134-136
    • (2002) J Clin Nursing , vol.11 , pp. 134-136
    • O'Connell, B.1    Myers, H.2
  • 35
    • 34247486387 scopus 로고    scopus 로고
    • The use of artificial neural networks for the objective determination of hearing threshold, using the auditory brainstem response
    • Begg R., Kamruzzaman J., and Sarker R. (Eds), IDEA Group Inc., Hershey
    • Davey R.T., McCullagh P.J., McAllister H.G., and Houston H.G. The use of artificial neural networks for the objective determination of hearing threshold, using the auditory brainstem response. In: Begg R., Kamruzzaman J., and Sarker R. (Eds). Neural networks in healthcare: potentials and challenges (2006), IDEA Group Inc., Hershey 195-215
    • (2006) Neural networks in healthcare: potentials and challenges , pp. 195-215
    • Davey, R.T.1    McCullagh, P.J.2    McAllister, H.G.3    Houston, H.G.4
  • 36
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representation
    • Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal. Mach Intell 2 (1989) 674-693
    • (1989) IEEE Trans Pattern Anal. Mach Intell , vol.2 , pp. 674-693
    • Mallat, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.