메뉴 건너뛰기




Volumn 46, Issue 1-2, 2007, Pages 268-277

Generalizing the k-Windows clustering algorithm in metric spaces

Author keywords

Clustering; Data mining; k Windows

Indexed keywords

DATA MINING; DATA REDUCTION; DATA STRUCTURES; DISTANCE MEASUREMENT; NUMERICAL METHODS;

EID: 34247511600     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2006.12.035     Document Type: Article
Times cited : (7)

References (41)
  • 3
    • 0026828784 scopus 로고
    • Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding
    • Ramasubramanian V., and Paliwal K. Fast k-dimensional tree algorithms for nearest neighbor search with application to vector quantization encoding. IEEE Transactions on Signal Processing 40 3 (1992) 518-531
    • (1992) IEEE Transactions on Signal Processing , vol.40 , Issue.3 , pp. 518-531
    • Ramasubramanian, V.1    Paliwal, K.2
  • 4
    • 34247495349 scopus 로고    scopus 로고
    • R.W. Becker, G.V. Lago, A global optimization algorithm, in: Proceedings of the 8th Allerton Conference on Circuits and Systems Theory, 1970, pp. 3-12
  • 6
    • 10444253960 scopus 로고    scopus 로고
    • M. Rigou, S. Sirmakessis, A. Tsakalidis, A computational geometry approach to web personalization, in: IEEE International Conference on E-Commerce Technology, CEC'04, San Diego, California, 2004, pp. 377-380
  • 7
    • 0004185855 scopus 로고
    • Edward Brothers, Ann Arbor, MI
    • Tryon C. Cluster Analysis (1939), Edward Brothers, Ann Arbor, MI
    • (1939) Cluster Analysis
    • Tryon, C.1
  • 9
    • 24344491523 scopus 로고    scopus 로고
    • Unsupervised clustering on dynamic databases
    • Tasoulis D.K., and Vrahatis M.N. Unsupervised clustering on dynamic databases. Pattern Recognition Letters 26 13 (2006) 2116-2127
    • (2006) Pattern Recognition Letters , vol.26 , Issue.13 , pp. 2116-2127
    • Tasoulis, D.K.1    Vrahatis, M.N.2
  • 11
    • 0036230457 scopus 로고    scopus 로고
    • The new k-Windows algorithm for improving the k-means clustering algorithm
    • Vrahatis M.N., Boutsinas B., Alevizos P., and Pavlides G. The new k-Windows algorithm for improving the k-means clustering algorithm. Journal of Complexity 18 (2002) 375-391
    • (2002) Journal of Complexity , vol.18 , pp. 375-391
    • Vrahatis, M.N.1    Boutsinas, B.2    Alevizos, P.3    Pavlides, G.4
  • 12
    • 34247472380 scopus 로고    scopus 로고
    • D.K. Tasoulis, V.P. Plagianakos, M.N. Vrahatis, Unsupervised cluster analysis in bioinformatics, in: Fourth European Symposium on "Biomedical Engineering", 2004
  • 13
    • 34247471440 scopus 로고    scopus 로고
    • D.K. Tasoulis, V.P. Plagianakos, M.N. Vrahatis, Unsupervised clustering of bioinformatics data, in: European Symposium on Intelligent Technologies, Hybrid Systems and Their Implementation on Smart Adaptive Systems, Eunite, 2004, pp. 47-53
  • 14
    • 34247479812 scopus 로고    scopus 로고
    • G.D. Magoulas, V.P. Plagianakos, D.K. Tasoulis, M.N. Vrahatis, Tumor detection in colonoscopy using the unsupervised k-Windows clustering algorithm and neural networks, in: Fourth European Symposium on "Biomedical Engineering", 2004
  • 15
    • 9444220307 scopus 로고    scopus 로고
    • On-line neural network training for automatic ischemia episode detection
    • Rutkowski L., Siekmann J.H., Tadeusiewicz R., and Zadeh L.A. (Eds), Springer-Verlag
    • Tasoulis D.K., Vladutu L., Plagianakos V.P., Bezerianos A., and Vrahatis M.N. On-line neural network training for automatic ischemia episode detection. In: Rutkowski L., Siekmann J.H., Tadeusiewicz R., and Zadeh L.A. (Eds). Lecture Notes in Computer Science vol. 2070 (2003), Springer-Verlag 1062-1068
    • (2003) Lecture Notes in Computer Science , vol.2070 , pp. 1062-1068
    • Tasoulis, D.K.1    Vladutu, L.2    Plagianakos, V.P.3    Bezerianos, A.4    Vrahatis, M.N.5
  • 17
    • 70349406797 scopus 로고    scopus 로고
    • N.G. Pavlidis, D.K. Tasoulis, M.N. Vrahatis, Financial forecasting through unsupervised clustering and evolutionary trained neural networks, in: Congress on Evolutionary Computation, Canberra, Australia, 2003, pp. 2314-2321
  • 18
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • Gowda K.C., and Diday E. Symbolic clustering using a new dissimilarity measure. Pattern Recognition 24 6 (1991) 567-578
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Gowda, K.C.1    Diday, E.2
  • 19
    • 0001330098 scopus 로고
    • A general coefficient of similarity and some of its properties
    • Gower J.C. A general coefficient of similarity and some of its properties. Biometrics 27 (1971) 857-871
    • (1971) Biometrics , vol.27 , pp. 857-871
    • Gower, J.C.1
  • 20
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang Z. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery 2 3 (1998) 283-304
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 21
    • 0029415780 scopus 로고
    • A conceptual version of the k-means algorithm
    • Ralambondrainy H. A conceptual version of the k-means algorithm. Pattern Recognition Letters 16 11 (1995) 1147-1157
    • (1995) Pattern Recognition Letters , vol.16 , Issue.11 , pp. 1147-1157
    • Ralambondrainy, H.1
  • 22
    • 0036709106 scopus 로고    scopus 로고
    • Clarans: A method for clustering objects for spatial data mining
    • Ng R.T., and Han J. Clarans: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering 14 5 (2002) 1003-1016
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 23
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
    • Sander J., Ester M., Kriegel H.-P., and Xu X. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery 2 2 (1998) 169-194
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 26
    • 34247509012 scopus 로고    scopus 로고
    • P. Alevizos, An algorithm for orthogonal range search in d ≥ 3 dimensions, in: Proceedings of the 14th European Workshop on Computational Geometry, Barcelona, 1998
  • 27
    • 0019173421 scopus 로고
    • Efficient worst-case data structures for range searching
    • Bentley J.L., and Maurer H.A. Efficient worst-case data structures for range searching. Acta Informatica 13 (1980) 155-168
    • (1980) Acta Informatica , vol.13 , pp. 155-168
    • Bentley, J.L.1    Maurer, H.A.2
  • 28
    • 0022767762 scopus 로고
    • Filtering search: A new approach to query-answering
    • Chazelle B. Filtering search: A new approach to query-answering. SIAM Journal on Computing 15 3 (1986) 703-724
    • (1986) SIAM Journal on Computing , vol.15 , Issue.3 , pp. 703-724
    • Chazelle, B.1
  • 29
    • 85012186736 scopus 로고    scopus 로고
    • G. Qian, Q. Zhu, Q. Xue, S. Pramanik, The nd-tree: A dynamic indexing technique for multidimensional non-ordered discrete data spaces, in: 29th International Conference on Very Large Data Bases, Berlin, Germany, 2003, pp. 620-631
  • 31
    • 0001728087 scopus 로고    scopus 로고
    • Indexing large metric spaces for similarity search queries
    • Bozkaya T., and Ozsoyoglu M. Indexing large metric spaces for similarity search queries. ACM Transactions on Database Systems 24 3 (1999) 361-404
    • (1999) ACM Transactions on Database Systems , vol.24 , Issue.3 , pp. 361-404
    • Bozkaya, T.1    Ozsoyoglu, M.2
  • 34
    • 0036706560 scopus 로고    scopus 로고
    • Searching in metric spaces by spatial approximation
    • Navarro G. Searching in metric spaces by spatial approximation. The VLDB Journal 11 1 (2002) 28-46
    • (2002) The VLDB Journal , vol.11 , Issue.1 , pp. 28-46
    • Navarro, G.1
  • 36
    • 34247529712 scopus 로고    scopus 로고
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998
  • 37
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher D.H. Knowledge acquisition via incremental conceptual clustering. Machine Learning 2 2 (1987) 139-172
    • (1987) Machine Learning , vol.2 , Issue.2 , pp. 139-172
    • Fisher, D.H.1
  • 39
    • 0027188633 scopus 로고
    • Data structures and algorithms for nearest neighbor search in general metric spaces
    • ACM Press
    • Yianilos N.P. Data structures and algorithms for nearest neighbor search in general metric spaces. ACM-SIAM Symposium on Discrete Algorithms (1993), ACM Press 311-321
    • (1993) ACM-SIAM Symposium on Discrete Algorithms , pp. 311-321
    • Yianilos, N.P.1
  • 40
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • Boley D. Principal direction divisive partitioning. Data Mining and Knowledge Discovery 2 4 (1998) 325-344
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.1
  • 41
    • 34247521216 scopus 로고    scopus 로고
    • D. Zeimpekis, E. Gallopoulos, PDDP(l): Towards a flexing principal direction divisive partitioning clustering algorithms, in: D. Boley, I. Dhillon, J. Ghosh, J. Kogan (Eds.), Proc. IEEE ICDM '03 Workshop on Clustering Large Data Sets, Melbourne, Florida, 2003, pp. 26-35


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.