메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 18-30

Every linear threshold function has a low-weight approximator

Author keywords

[No Author keywords available]

Indexed keywords

INTEGER WEIGHTS; INVERSE POLYNOMIALS; LINEAR THRESHOLD FUNCTION; POLYNOMIAL BOUNDS;

EID: 34247484531     PISSN: 10930159     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CCC.2006.18     Document Type: Conference Paper
Times cited : (14)

References (42)
  • 4
    • 0000430986 scopus 로고
    • The Perceptron: A model for brain functioning
    • H. Block. The Perceptron: a model for brain functioning. Reviews of Modern Physics, 34:123-135, 1962.
    • (1962) Reviews of Modern Physics , vol.34 , pp. 123-135
    • Block, H.1
  • 5
    • 0000313642 scopus 로고
    • Harmonic analysis of polynomial threshold functions
    • J. Brack. Harmonic analysis of polynomial threshold functions. SIAM Journal on Discrete Mathematics, 3(2): 168-177, 1990.
    • (1990) SIAM Journal on Discrete Mathematics , vol.3 , Issue.2 , pp. 168-177
    • Brack, J.1
  • 9
    • 84971737376 scopus 로고
    • A mildly exponential time algorithm for approximating the number of solutions to a multidimensional knapsack problem
    • M. Dyer, A. Frieze, K. Rannan, A. Kapoor, L. Perkovic, and U. Vazirani. A mildly exponential time algorithm for approximating the number of solutions to a multidimensional knapsack problem. Combinatorics, Probability and Computing, 2:271-284, 1993.
    • (1993) Combinatorics, Probability and Computing , vol.2 , pp. 271-284
    • Dyer, M.1    Frieze, A.2    Rannan, K.3    Kapoor, A.4    Perkovic, L.5    Vazirani, U.6
  • 10
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation, 121(2):256-285, 1995.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1): 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 14
    • 0013416929 scopus 로고    scopus 로고
    • Simulating threshold circuits by majority circuits
    • M. Goldmann and M. Karpinski. Simulating threshold circuits by majority circuits. SIAM Journal on Computing, 27(1):230-246, 1998.
    • (1998) SIAM Journal on Computing , vol.27 , Issue.1 , pp. 230-246
    • Goldmann, M.1    Karpinski, M.2
  • 16
    • 0000420294 scopus 로고
    • On the size of weights for threshold gates
    • J. Håstad. On the size of weights for threshold gates. SIAM Journal on Discrete Mathematics, 7(3):484-492, 1994.
    • (1994) SIAM Journal on Discrete Mathematics , vol.7 , Issue.3 , pp. 484-492
    • Håstad, J.1
  • 17
    • 34247466665 scopus 로고    scopus 로고
    • Personal communication
    • J. Håstad. Personal communication, 2005.
    • (2005)
    • Håstad, J.1
  • 19
    • 0011996276 scopus 로고
    • On connectionist models
    • 87-012, Dept. of Computer Science, University of Chicago
    • J. Hong. On connectionist models. Technical Report Technical Report 87-012, Dept. of Computer Science, University of Chicago, 1987.
    • (1987) Technical Report Technical Report
    • Hong, J.1
  • 20
    • 0003599222 scopus 로고
    • University of California Press
    • S. Hu. Threshold Logic. University of California Press, 1965.
    • (1965) Threshold Logic
    • Hu, S.1
  • 23
    • 34247546277 scopus 로고
    • A gemoetric test-synthesis procedure for a threshold device
    • P. Kaszerman. A gemoetric test-synthesis procedure for a threshold device. Information and Control, 6(4):381-398, 1963.
    • (1963) Information and Control , vol.6 , Issue.4 , pp. 381-398
    • Kaszerman, P.1
  • 24
    • 85128155585 scopus 로고    scopus 로고
    • A. Klivans, R. O'Donnell, and R. Servedio. Learning intersections and thresholds of halfspaces. Journal of Computer & System Sciences, 68(4):808-840, 2004. Preliminary version in Proc. of FOCS'02.
    • A. Klivans, R. O'Donnell, and R. Servedio. Learning intersections and thresholds of halfspaces. Journal of Computer & System Sciences, 68(4):808-840, 2004. Preliminary version in Proc. of FOCS'02.
  • 26
    • 0027582888 scopus 로고
    • Active learning using arbitrary binary valued queries
    • S. Kulkarni, S. Mitter, and J. Tsitsiklis. Active learning using arbitrary binary valued queries. Machine Learning, 11:23-35, 1993.
    • (1993) Machine Learning , vol.11 , pp. 23-35
    • Kulkarni, S.1    Mitter, S.2    Tsitsiklis, J.3
  • 27
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 32
  • 38
    • 3142639211 scopus 로고    scopus 로고
    • Monotone Boolean Formulas can Approximate Monotone Linear Threshold Functions
    • R. Servedio. Monotone Boolean Formulas can Approximate Monotone Linear Threshold Functions. Discrete Applied Mathematics, 142(1-3):181-187, 2004.
    • (2004) Discrete Applied Mathematics , vol.142 , Issue.1-3 , pp. 181-187
    • Servedio, R.1
  • 41
    • 0000378392 scopus 로고
    • Short monotone formulae for the majority function
    • L. Valiant. Short monotone formulae for the majority function. Journal of Algorithms, 5:363-366, 1984.
    • (1984) Journal of Algorithms , vol.5 , pp. 363-366
    • Valiant, L.1
  • 42
    • 0015039980 scopus 로고
    • Chow parameters in threshold logic
    • R. Winder. Chow parameters in threshold logic. Journal of the ACM, 18(2):265-289, 1971.
    • (1971) Journal of the ACM , vol.18 , Issue.2 , pp. 265-289
    • Winder, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.