-
1
-
-
84995342211
-
-
Sykora S, Fantazzini P. Italian patent BO2005A000445, registered July 1, 2005, University of Bologna. EU patent pending.
-
-
-
-
2
-
-
84995305773
-
-
Arfken G.B., and Weber H. Mathematical methods for physicists (2000), Academic Press, San Diego
-
-
-
-
3
-
-
84995329186
-
-
Press W.H., Teukolsky S.A., Vetterling W.T., and Flannery B.P. Numerical recipes in C (1992), Cambridge University Press, Cambridge
-
-
-
-
4
-
-
84995354431
-
-
Wilkinson J.H. The algebraic eigenvalue problem (1965), Clarendon Press, Oxford (chapter 2)
-
-
-
-
5
-
-
33947409069
-
On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind
-
McWhirter J.G., and Pike E.R. On the numerical inversion of the Laplace transform and similar Fredholm integral equations of the first kind. J Phys A Math Gen 11 (1978) 1729-1745
-
(1978)
J Phys A Math Gen
, vol.11
, pp. 1729-1745
-
-
McWhirter, J.G.1
Pike, E.R.2
-
6
-
-
0039213283
-
Rapid singular value decomposition for time-domain analysis of magnetic resonance signals by use of the Lanczos algorithm
-
Millhauser G.L., Carter A.A., Schneider D.J., Freed J.H., and Oswald R.E. Rapid singular value decomposition for time-domain analysis of magnetic resonance signals by use of the Lanczos algorithm. J Magn Reson 82 (1989) 150-155
-
(1989)
J Magn Reson
, vol.82
, pp. 150-155
-
-
Millhauser, G.L.1
Carter, A.A.2
Schneider, D.J.3
Freed, J.H.4
Oswald, R.E.5
-
7
-
-
0347610352
-
Multiexponential analysis of relaxation decays based on linear prediction and singular-value decomposition
-
Lin Y.Y., Ge N.H., and Hwang L.P. Multiexponential analysis of relaxation decays based on linear prediction and singular-value decomposition. J Magn Reson A 105 (1993) 65-71
-
(1993)
J Magn Reson A
, vol.105
, pp. 65-71
-
-
Lin, Y.Y.1
Ge, N.H.2
Hwang, L.P.3
-
8
-
-
0020176542
-
A constrained regularization method for inverting data represented by linear algebraic of integral equations
-
Provencher S.W. A constrained regularization method for inverting data represented by linear algebraic of integral equations. Computer Phys Comm 27 (1982) 213-227
-
(1982)
Computer Phys Comm
, vol.27
, pp. 213-227
-
-
Provencher, S.W.1
-
9
-
-
0020176708
-
A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations
-
Provencher S.W. A general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Computer Phys Comm 27 (1982) 229-242
-
(1982)
Computer Phys Comm
, vol.27
, pp. 229-242
-
-
Provencher, S.W.1
-
10
-
-
21844498930
-
Regularized positive exponential sum (REPES) program
-
Jakes J. Regularized positive exponential sum (REPES) program. Collect Czechoslov Chem Commun 60 (1995) 1781-1797
-
(1995)
Collect Czechoslov Chem Commun
, vol.60
, pp. 1781-1797
-
-
Jakes, J.1
-
11
-
-
0034573133
-
Uniform penalty inversion of multiexponential decay data II
-
Borgia G.C., Brown R.J.S., and Fantazzini P. Uniform penalty inversion of multiexponential decay data II. J Magn Reson 147 (2000) 273-285
-
(2000)
J Magn Reson
, vol.147
, pp. 273-285
-
-
Borgia, G.C.1
Brown, R.J.S.2
Fantazzini, P.3
-
12
-
-
0032061440
-
Uniform penalty inversion of multiexponential decay data
-
Borgia G.C., Brown R.J.S., and Fantazzini P. Uniform penalty inversion of multiexponential decay data. J Magn Reson 132 (1998) 65-77
-
(1998)
J Magn Reson
, vol.132
, pp. 65-77
-
-
Borgia, G.C.1
Brown, R.J.S.2
Fantazzini, P.3
-
13
-
-
0032100345
-
Examples of uniform penalty inversion of multiexponential decay data
-
Borgia G.C., Brown R.J.S., and Fantazzini P. Examples of uniform penalty inversion of multiexponential decay data. Magn Reson Imaging 16 (1998) 549-552
-
(1998)
Magn Reson Imaging
, vol.16
, pp. 549-552
-
-
Borgia, G.C.1
Brown, R.J.S.2
Fantazzini, P.3
|