-
2
-
-
0011011498
-
-
B. Tomberli, C. J. Benmore, P. A. Egelstaff, J. Neuefeind, and V. Honkirnaki, J. Phys.: Condens. Matter 12, 2597 (2000).
-
(2000)
J. Phys.: Condens. Matter
, vol.12
, pp. 2597
-
-
Tomberli, B.1
Benmore, C.J.2
Egelstaff, P.A.3
Neuefeind, J.4
Honkirnaki, V.5
-
3
-
-
0037124597
-
-
J. Neuefeind, C. J. Benmore, B. Tomberli, and P. A. Egelstaff, J. Phys.: Condens. Matter 14, L429 (2002).
-
(2002)
J. Phys.: Condens. Matter
, vol.14
-
-
Neuefeind, J.1
Benmore, C.J.2
Tomberli, B.3
Egelstaff, P.A.4
-
4
-
-
0037157640
-
-
Y. S. Badyal, D. L. Price, M.-L. Saboungi, D. R. Haeffner, and S. D. Shastri, J. Chem. Phys. 116, 10833 (2002).
-
(2002)
J. Chem. Phys
, vol.116
, pp. 10833
-
-
Badyal, Y.S.1
Price, D.L.2
Saboungi, M.-L.3
Haeffner, D.R.4
Shastri, S.D.5
-
5
-
-
18044384825
-
-
R. T. Hart, C. J. Benmore, J. Neuefeind, S. Kohara, B. Tomberli, and P. A. Egelstaff, Phys. Rev. Lett. 94, 047801 (2005).
-
(2005)
Phys. Rev. Lett
, vol.94
, pp. 047801
-
-
Hart, R.T.1
Benmore, C.J.2
Neuefeind, J.3
Kohara, S.4
Tomberli, B.5
Egelstaff, P.A.6
-
6
-
-
34547554908
-
-
R. T. Hart, Q. Mei, C. J. Benmore, J. Neuefeind, J. F. C. Turner, M. Dolgos, B. Tomberli, and P. A. Egelstaff, J. Chem. Phys. 124, 134505 (2006).
-
(2006)
J. Chem. Phys
, vol.124
, pp. 134505
-
-
Hart, R.T.1
Mei, Q.2
Benmore, C.J.3
Neuefeind, J.4
Turner, J.F.C.5
Dolgos, M.6
Tomberli, B.7
Egelstaff, P.A.8
-
10
-
-
0346421113
-
-
B. Chen, I. Ivanov, M. L. Klein, and M. Parrinello, Phys. Rev. Lett. 91, 215503 (2003).
-
(2003)
Phys. Rev. Lett
, vol.91
, pp. 215503
-
-
Chen, B.1
Ivanov, I.2
Klein, M.L.3
Parrinello, M.4
-
18
-
-
9644308370
-
-
edited by M. J. Cooper, P. E. Mijnarends, N. Shiotani, N. Sakai, and A. Bansil Oxford University Press, Oxford
-
X-Ray Compton Scattering, edited by M. J. Cooper, P. E. Mijnarends, N. Shiotani, N. Sakai, and A. Bansil (Oxford University Press, Oxford, 2004).
-
(2004)
X-Ray Compton Scattering
-
-
-
19
-
-
0001118126
-
-
C. Blaas, J. Redinger, S. Manninen, V. Honkimäki, K. Hämäläinen, and P. Suortti, Phys. Rev. Lett. 75, 1984 (1995).
-
(1995)
Phys. Rev. Lett
, vol.75
, pp. 1984
-
-
Blaas, C.1
Redinger, J.2
Manninen, S.3
Honkimäki, V.4
Hämäläinen, K.5
Suortti, P.6
-
20
-
-
11944255981
-
-
Y. Sakurai, Y. Tanaka, A. Bansil, S. Kaprzyk, A. T. Stewart, Y. Nagashima, T. Hyodo, S. Nanao, H. Kawata, and N. Shiotani, Phys. Rev. Lett. 74, 2252 (1995).
-
(1995)
Phys. Rev. Lett
, vol.74
, pp. 2252
-
-
Sakurai, Y.1
Tanaka, Y.2
Bansil, A.3
Kaprzyk, S.4
Stewart, A.T.5
Nagashima, Y.6
Hyodo, T.7
Nanao, S.8
Kawata, H.9
Shiotani, N.10
-
21
-
-
1442263636
-
-
K. Nygård, S. Huotari, K. Hämäläinen, S. Manninen, T. Buslaps, N. Hari Babu, M. Kambara, and D. A. Cardwell, Phys. Rev. B 69, 020501 (R) (2004).
-
K. Nygård, S. Huotari, K. Hämäläinen, S. Manninen, T. Buslaps, N. Hari Babu, M. Kambara, and D. A. Cardwell, Phys. Rev. B 69, 020501 (R) (2004).
-
-
-
-
22
-
-
19744382596
-
-
M. Hakala, S. Huotari, K. Hämäläinen, S. Manninen, Ph. Wernet, A. Nilsson, and L. G. M. Pettersson, Phys. Rev. B 70, 125413 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 125413
-
-
Hakala, M.1
Huotari, S.2
Hämäläinen, K.3
Manninen, S.4
Wernet, P.5
Nilsson, A.6
Pettersson, L.G.M.7
-
23
-
-
33144481992
-
-
M. Hakala, K. Nygård, S. Manninen, L. G. M. Pettersson, and K. Hämäläinen, Phys. Rev. B 73, 035432 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 035432
-
-
Hakala, M.1
Nygård, K.2
Manninen, S.3
Pettersson, L.G.M.4
Hämäläinen, K.5
-
24
-
-
33748281534
-
-
M. Hakala, K. Nygård, S. Manninen, S. Huotari, T. Buslaps, A. Nilsson, L. G. M. Pettersson, and K. Hämäläinen, J. Chem. Phys. 125, 084504 (2006).
-
(2006)
J. Chem. Phys
, vol.125
, pp. 084504
-
-
Hakala, M.1
Nygård, K.2
Manninen, S.3
Huotari, S.4
Buslaps, T.5
Nilsson, A.6
Pettersson, L.G.M.7
Hämäläinen, K.8
-
25
-
-
33749367366
-
-
K. Nygård, M. Hakala, S. Manninen, A. Andrejczuk, M. Itou, Y. Sakurai, L. G. M. Pettersson, and K. Hämäläinen, Phys. Rev. E 74, 031503 (2006).
-
(2006)
Phys. Rev. E
, vol.74
, pp. 031503
-
-
Nygård, K.1
Hakala, M.2
Manninen, S.3
Andrejczuk, A.4
Itou, M.5
Sakurai, Y.6
Pettersson, L.G.M.7
Hämäläinen, K.8
-
26
-
-
33144482937
-
-
K. Nygård, M. Hakala, S. Manninen, K. Hämäläinen, M. Itou, A. Andrejczuk, and Y. Sakurai, Phys. Rev. B 73, 024208 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 024208
-
-
Nygård, K.1
Hakala, M.2
Manninen, S.3
Hämäläinen, K.4
Itou, M.5
Andrejczuk, A.6
Sakurai, Y.7
-
29
-
-
0001087855
-
-
E. D. Isaacs, A. Shukla, P. M. Platzman, D. R. Hamann, B. Barbiellini, and C. A. Tulk, Phys. Rev. Lett. 82, 600 (1999).
-
(1999)
Phys. Rev. Lett
, vol.82
, pp. 600
-
-
Isaacs, E.D.1
Shukla, A.2
Platzman, P.M.3
Hamann, D.R.4
Barbiellini, B.5
Tulk, C.A.6
-
30
-
-
0034673296
-
-
T. Ghanty, V. N. Staroverov, P. R. Koren, and E. R. Davidson, J. Am. Chem. Soc. 122, 1210 (2000).
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 1210
-
-
Ghanty, T.1
Staroverov, V.N.2
Koren, P.R.3
Davidson, E.R.4
-
36
-
-
34247352461
-
-
The H-bond length and angle distributions of Ref. 27 are numerically inter-extrapolated to the temperatures of the present study.
-
The H-bond length and angle distributions of Ref. 27 are numerically inter-extrapolated to the temperatures of the present study.
-
-
-
-
37
-
-
34247361234
-
-
peak = 1.89 Å of the NMR-based H-bond length distribution.
-
peak = 1.89 Å of the NMR-based H-bond length distribution.
-
-
-
-
38
-
-
34247349987
-
-
K. Hermann, L. G. M. Pettersson, M. E. Casida et al, STOBE-DEMON, version 1.0, StoBe Software, 2002
-
K. Hermann, L. G. M. Pettersson, M. E. Casida et al., STOBE-DEMON, version 1.0, StoBe Software, 2002.
-
-
-
-
43
-
-
34247360000
-
-
The calculations have been performed with the code CPMD Version 3.3, written by Jürg Hutter et al, Max-Planck-Institut für Festkörperforschung, Stuttgart, IBM Research Laboratory, Zürich, 1995
-
The calculations have been performed with the code CPMD Version 3.3, written by Jürg Hutter et al., Max-Planck-Institut für Festkörperforschung, Stuttgart, IBM Research Laboratory, Zürich, 1995.
-
-
-
-
50
-
-
84943502952
-
-
S. Nosé, Mol. Phys. 52, 255 (1984).
-
(1984)
Mol. Phys
, vol.52
, pp. 255
-
-
Nosé, S.1
-
58
-
-
23244460838
-
-
J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Penderson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).
-
(1992)
Phys. Rev. B
, vol.46
, pp. 6671
-
-
Perdew, J.P.1
Chevary, J.A.2
Vosko, S.H.3
Jackson, K.A.4
Penderson, M.R.5
Singh, D.J.6
Fiolhais, C.7
-
59
-
-
0033447881
-
-
P. Suortti, T. Buslaps, P. Fajardo, V. Honkimäki, M. K. U. Lienert, J. E. McCarthy, M. Renier, A. Shukla, T. Tschentscher, and T. Meinander, J. Synchrotron Radiat. 6, 69 (1999).
-
(1999)
J. Synchrotron Radiat
, vol.6
, pp. 69
-
-
Suortti, P.1
Buslaps, T.2
Fajardo, P.3
Honkimäki, V.4
Lienert, M.K.U.5
McCarthy, J.E.6
Renier, M.7
Shukla, A.8
Tschentscher, T.9
Meinander, T.10
-
61
-
-
34247335459
-
-
The multiple scattering correction has a negligible effect on the experimental CP differences compared to the present statistical inaccuracy
-
The multiple scattering correction has a negligible effect on the experimental CP differences compared to the present statistical inaccuracy.
-
-
-
-
65
-
-
34247381150
-
-
Compared to our previously reported CP differences for H2O (Ref. 24, the present data exhibit some quantitative discrepancies at elevated temperatures (i.e, at 50 and 90 °C, These are partly due to the improved momentum resolution of the present study (Δq=0.45 a.u, compared to that of Ref. 24 (Δq=0.64 a.u, Based on careful studies, the most probable explanation for the remaining discrepancies is the improved sample confinement of the present study (i.e, using glass capillaries) as compared to the sample cell with Kapton windows used in Ref. 24, the latter suffering from water diffusion at elevated temperatures. In principle this should only affect the intensity, but secondary effects hamper proper background subtraction. Moreover, the data consistency of the present study is significantly improved due to the top-up mode used at SPring-8, which minimizes nonstatistical fluctuations. We further note that if there are any temperature-independent contribut
-
2O (Ref. 24), the present data exhibit some quantitative discrepancies at elevated temperatures (i.e., at 50 and 90 °C). These are partly due to the improved momentum resolution of the present study (Δq=0.45 a.u.) compared to that of Ref. 24 (Δq=0.64 a.u.). Based on careful studies, the most probable explanation for the remaining discrepancies is the improved sample confinement of the present study (i.e., using glass capillaries) as compared to the sample cell with Kapton windows used in Ref. 24, the latter suffering from water diffusion at elevated temperatures. In principle this should only affect the intensity, but secondary effects hamper proper background subtraction. Moreover, the data consistency of the present study is significantly improved due to the top-up mode used at SPring-8, which minimizes nonstatistical fluctuations. We further note that if there are any temperature-independent contributions present in the data which are not properly subtracted (e.g., multiple scattering or scattering from the cell) the observed amplitude will be lower. Importantly, the results of neither Ref. 24 nor the present study are affected by these quantitative discrepancies at elevated temperatures. In particular, the necessity of excluding the short and largely bent H bonds from the NMR-based model has been verified.
-
-
-
-
67
-
-
2542496884
-
-
B. Hetényi, F. De Angelis, P. Giannozzi, and R. Car, J. Chem. Phys. 120, 8632 (2004).
-
(2004)
J. Chem. Phys
, vol.120
, pp. 8632
-
-
Hetényi, B.1
De Angelis, F.2
Giannozzi, P.3
Car, R.4
-
68
-
-
33244477644
-
-
M. Odelius, M. Cavalleri, A. Nilsson, and L. G. M. Pettersson, Phys. Rev. B 73, 024205 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 024205
-
-
Odelius, M.1
Cavalleri, M.2
Nilsson, A.3
Pettersson, L.G.M.4
|