-
1
-
-
85058590863
-
-
Wiley-IEEE Press, New York
-
Banerjee S., and Verghese G. Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control (2001), Wiley-IEEE Press, New York
-
(2001)
Nonlinear Phenomena in Power Electronics: Attractors, Bifurcations, Chaos, and Nonlinear Control
-
-
Banerjee, S.1
Verghese, G.2
-
2
-
-
0033229544
-
Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems
-
Bernardo M.D., Feigin M.I., Hogan S.J., and Homer M.E. Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems. Chaos Solitons Fractals 10 11 (1999) 1881-1908
-
(1999)
Chaos Solitons Fractals
, vol.10
, Issue.11
, pp. 1881-1908
-
-
Bernardo, M.D.1
Feigin, M.I.2
Hogan, S.J.3
Homer, M.E.4
-
4
-
-
0039752913
-
Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators
-
Chicone C. Lyapunov-Schmidt reduction and Melnikov integrals for bifurcation of periodic solutions in coupled oscillators. J. Differential Equations 112 (1994) 407-447
-
(1994)
J. Differential Equations
, vol.112
, pp. 407-447
-
-
Chicone, C.1
-
5
-
-
0009370405
-
Periodically forced linear oscillator with impacts-chaos and long period motions
-
Chow S.N., and Holmes P.J. Periodically forced linear oscillator with impacts-chaos and long period motions. Phys. Rev. Lett. 51 (1983) 623-626
-
(1983)
Phys. Rev. Lett.
, vol.51
, pp. 623-626
-
-
Chow, S.N.1
Holmes, P.J.2
-
7
-
-
27344439701
-
Melnikov method for homoclinic bifurcation in nonlinear impact oscillators
-
Du Z., and Zhang W. Melnikov method for homoclinic bifurcation in nonlinear impact oscillators. Comput. Math. Appl. 50 3-4 (2005) 445-458
-
(2005)
Comput. Math. Appl.
, vol.50
, Issue.3-4
, pp. 445-458
-
-
Du, Z.1
Zhang, W.2
-
8
-
-
0028516064
-
Bifurcations in impact oscillators
-
Foale S., and Bishop S.R. Bifurcations in impact oscillators. Nonlinear Dynam. 6 (1994) 285-299
-
(1994)
Nonlinear Dynam.
, vol.6
, pp. 285-299
-
-
Foale, S.1
Bishop, S.R.2
-
9
-
-
0002035723
-
On normal form calculations in impact oscillators
-
Fredriksson M.H., and Nordmark A.B. On normal form calculations in impact oscillators. Proc. R. Soc. Lond. A 456 (2000) 315-329
-
(2000)
Proc. R. Soc. Lond.
, vol.A 456
, pp. 315-329
-
-
Fredriksson, M.H.1
Nordmark, A.B.2
-
10
-
-
0032054337
-
The simplest walking model: Stability, complexity and scaling
-
Garcia M., Chatterjee A., Ruina A., and Coleman M. The simplest walking model: Stability, complexity and scaling. ASME J. Biomech. Eng. 120 2 (1998) 281-288
-
(1998)
ASME J. Biomech. Eng.
, vol.120
, Issue.2
, pp. 281-288
-
-
Garcia, M.1
Chatterjee, A.2
Ruina, A.3
Coleman, M.4
-
12
-
-
0003983811
-
-
Robert E. Krieger Publishing Company, Huntington, NY
-
Hale J.K. Ordinary Differential Equations (1980), Robert E. Krieger Publishing Company, Huntington, NY
-
(1980)
Ordinary Differential Equations
-
-
Hale, J.K.1
-
14
-
-
0042623544
-
Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator
-
Luo A.C.J. Period-doubling induced chaotic motion in the LR model of a horizontal impact oscillator. Chaos Solitons Fractals 19 (2004) 823-839
-
(2004)
Chaos Solitons Fractals
, vol.19
, pp. 823-839
-
-
Luo, A.C.J.1
-
15
-
-
0141615851
-
Global chaos in a periodically forced, linear system with a dead-zone restoring force
-
Luo A.C.J., and Menon S. Global chaos in a periodically forced, linear system with a dead-zone restoring force. Chaos Solitons Fractals 19 (2004) 1189-1199
-
(2004)
Chaos Solitons Fractals
, vol.19
, pp. 1189-1199
-
-
Luo, A.C.J.1
Menon, S.2
-
16
-
-
0021097823
-
A periodically forced piecewise linear oscillator
-
Shaw S.W., and Holmes P.J. A periodically forced piecewise linear oscillator. J. Sound Vibration 90 (1983) 129-155
-
(1983)
J. Sound Vibration
, vol.90
, pp. 129-155
-
-
Shaw, S.W.1
Holmes, P.J.2
-
17
-
-
0024859539
-
The transition to chaos in a simple mechanical system
-
Shaw S.W., and Rand R.H. The transition to chaos in a simple mechanical system. Internat. J. Non-linear Mech. 24 1 (1989) 41-56
-
(1989)
Internat. J. Non-linear Mech.
, vol.24
, Issue.1
, pp. 41-56
-
-
Shaw, S.W.1
Rand, R.H.2
|