메뉴 건너뛰기




Volumn 75, Issue 1, 2007, Pages 1-24

The three basic types of residuals for a linear model

Author keywords

Linear mixed model; Longitudinal data; Multi level model; Random coefficients; Spatial data; Time series

Indexed keywords


EID: 34247253374     PISSN: 03067734     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1751-5823.2006.00001.x     Document Type: Article
Times cited : (17)

References (61)
  • 4
    • 34247228904 scopus 로고
    • Comments on What Is an Analysis of Variance?
    • Brillinger, D.R. (1987). Comments on "What Is an Analysis of Variance?" Ann. Stat., 15, 916-917.
    • (1987) Ann. Stat , vol.15 , pp. 916-917
    • Brillinger, D.R.1
  • 5
    • 0000473798 scopus 로고
    • Techniques for testing the constancy of regression relationships over time
    • Brown, R.L., Durbin, J. & Evans, J.M. (1975). Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc., Ser. B, Methodol., 37, 149-192.
    • (1975) J. R. Stat. Soc., Ser. B, Methodol , vol.37 , pp. 149-192
    • Brown, R.L.1    Durbin, J.2    Evans, J.M.3
  • 9
    • 0000093278 scopus 로고
    • Prediction Diagnostics for Spatial Linear Models
    • Christensen, R., Johnson, W. & Pearson, L.M. (1992). Prediction Diagnostics for Spatial Linear Models. Biometrika, 79, 583-591.
    • (1992) Biometrika , vol.79 , pp. 583-591
    • Christensen, R.1    Johnson, W.2    Pearson, L.M.3
  • 11
    • 0000888765 scopus 로고
    • A general definition of residuals (with discussion)
    • Cox, D.R. & Snell, E.J. (1968). A general definition of residuals (with discussion). J. R. Stat. Soc., Ser. B, Methodol., 30, 248-275.
    • (1968) J. R. Stat. Soc., Ser. B, Methodol , vol.30 , pp. 248-275
    • Cox, D.R.1    Snell, E.J.2
  • 14
    • 84972506679 scopus 로고
    • The unifying role of iterative generalized least squares in statistical algorithms (C/R: P403-408)
    • del Pino, G. (1989). The unifying role of iterative generalized least squares in statistical algorithms (C/R: p403-408). Stat. Sci., 4, 394-403.
    • (1989) Stat. Sci , vol.4 , pp. 394-403
    • del Pino, G.1
  • 17
    • 34247201836 scopus 로고    scopus 로고
    • Ph.D. thesis, Trinity College, Dublin, Dept of Statistics, TCD, Dublin, Ireland
    • Dillane, D. (2006). Deletion diagnostics for the linear mixed model. Ph.D. thesis, Trinity College, Dublin, Dept of Statistics, TCD, Dublin 2, Ireland.
    • (2006) Deletion diagnostics for the linear mixed model , pp. 2
    • Dillane, D.1
  • 20
    • 0034357554 scopus 로고    scopus 로고
    • Fraccaro, R., Hyndman, R.J. & Veevers, A. (2000). Residual diagnostic plots for checking for model mis-specification in time series regression. Aust. N. Z. J. Stat. [Formerly: @J(AstrlJSt) and @J(NZndSt)], 42(4), 463-477.
    • Fraccaro, R., Hyndman, R.J. & Veevers, A. (2000). Residual diagnostic plots for checking for model mis-specification in time series regression. Aust. N. Z. J. Stat. [Formerly: @J(AstrlJSt) and @J(NZndSt)], 42(4), 463-477.
  • 22
    • 0000611113 scopus 로고    scopus 로고
    • A simple derivation of deletion diagnostic results for the general linear model with correlated errors
    • Haslett, J. (1999). A simple derivation of deletion diagnostic results for the general linear model with correlated errors. J. R. Stat. Soc., Ser. B, Methodol., 61, 603-609.
    • (1999) J. R. Stat. Soc., Ser. B, Methodol , vol.61 , pp. 603-609
    • Haslett, J.1
  • 23
    • 1042302535 scopus 로고    scopus 로고
    • Application of 'delete = replace' to deletion diagnostics for variance component estimation in the linear mixed model
    • Haslett, J. & Dillane, D. (2004). Application of 'delete = replace' to deletion diagnostics for variance component estimation in the linear mixed model. J. R. Stat. Soc., Ser. B, Methodol., 66, 131-144.
    • (2004) J. R. Stat. Soc., Ser. B, Methodol , vol.66 , pp. 131-144
    • Haslett, J.1    Dillane, D.2
  • 24
    • 0001131423 scopus 로고    scopus 로고
    • Residuals for the linear model with general covariance structure
    • Haslett, J. & Hayes, K. (1998). Residuals for the linear model with general covariance structure. J. R. Stat. Soc., Ser. B, Methodol, 60, 201-215.
    • (1998) J. R. Stat. Soc., Ser. B, Methodol , vol.60 , pp. 201-215
    • Haslett, J.1    Hayes, K.2
  • 26
    • 84985534689 scopus 로고
    • Recursive Estimation of the General Linear Model with Dependent Errors and Multiple Additional Observations
    • Haslett, S. (1985). Recursive Estimation of the General Linear Model with Dependent Errors and Multiple Additional Observations. Aust. J. Stat., 27, 183-188.
    • (1985) Aust. J. Stat , vol.27 , pp. 183-188
    • Haslett, S.1
  • 27
    • 21344465067 scopus 로고    scopus 로고
    • Updating linear models with dependent errors to include additional data and/or parameters
    • Haslett, S. (1996). Updating linear models with dependent errors to include additional data and/or parameters. Linear Algeb. Appl., 237, 329-349.
    • (1996) Linear Algeb. Appl , vol.237 , pp. 329-349
    • Haslett, S.1
  • 28
    • 0033480006 scopus 로고    scopus 로고
    • Simplifying general least squares
    • Hayes, K. & Haslett, J. (1999). Simplifying general least squares. Am. Stat., 53, 376-381.
    • (1999) Am. Stat , vol.53 , pp. 376-381
    • Hayes, K.1    Haslett, J.2
  • 29
    • 2942599710 scopus 로고    scopus 로고
    • Cholesky residuals for assessing normal errors in a linear model with correlated outcomes
    • Houseman, A.E., Ryan, L.M. & Coull, B.A. (2004). Cholesky residuals for assessing normal errors in a linear model with correlated outcomes. J. Am. Stat. Assoc., 99, 383-394.
    • (2004) J. Am. Stat. Assoc , vol.99 , pp. 383-394
    • Houseman, A.E.1    Ryan, L.M.2    Coull, B.A.3
  • 30
    • 1642500777 scopus 로고
    • Comments on the Equality of the Ordinary Least Squares Estimator and the Best Linear Unbiased Estimator
    • Kempthorne, O. (1989). Comments on the Equality of the Ordinary Least Squares Estimator and the Best Linear Unbiased Estimator. Am. Stat., 43, 161-162.
    • (1989) Am. Stat , vol.43 , pp. 161-162
    • Kempthorne, O.1
  • 31
    • 0004692255 scopus 로고    scopus 로고
    • A review of the development and application of recursive residuals in linear models
    • Kianifard, F. & Swallow, W.H. (1996). A review of the development and application of recursive residuals in linear models. J. Am. Stat. Assoc., 91, 391-400.
    • (1996) J. Am. Stat. Assoc , vol.91 , pp. 391-400
    • Kianifard, F.1    Swallow, W.H.2
  • 32
    • 0026292325 scopus 로고
    • Orthonormal residuals in geostatistics: Model criticism and parameter estimation
    • Kitanidis, P.K. (1991). Orthonormal residuals in geostatistics: Model criticism and parameter estimation. Math. Geol., 23, 741-758.
    • (1991) Math. Geol , vol.23 , pp. 741-758
    • Kitanidis, P.K.1
  • 33
    • 0000212230 scopus 로고
    • Assessing normality in random effects models
    • Lange, N. & Ryan, L. (1989). Assessing normality in random effects models. Ann. Stat., 17, 624-642.
    • (1989) Ann. Stat , vol.17 , pp. 624-642
    • Lange, N.1    Ryan, L.2
  • 34
    • 84952071951 scopus 로고
    • The Use of Partial Residual Plots in Regression Analysis
    • Larsen, W.A. & McCleary, S.J. (1972). The Use of Partial Residual Plots in Regression Analysis. Technometrics, 14, 781-790.
    • (1972) Technometrics , vol.14 , pp. 781-790
    • Larsen, W.A.1    McCleary, S.J.2
  • 37
    • 0001424991 scopus 로고
    • Leverage, influence and residuals in regression models when observations are correlated
    • Martin, R.J. (1992). Leverage, influence and residuals in regression models when observations are correlated. Commun. Stat., A-Theory Methods, 21, 1183-1212.
    • (1992) Commun. Stat., A-Theory Methods , vol.21 , pp. 1183-1212
    • Martin, R.J.1
  • 38
    • 0010147816 scopus 로고
    • Recursive estimation of the general linear model with dependent errors
    • McGilchrist, C.A. & Sandland, R.L. (1979). Recursive estimation of the general linear model with dependent errors. J. R. Stat. Soc., Ser. B, Methodol., 41, 65-68.
    • (1979) J. R. Stat. Soc., Ser. B, Methodol , vol.41 , pp. 65-68
    • McGilchrist, C.A.1    Sandland, R.L.2
  • 40
    • 1042263225 scopus 로고
    • Checking the assumptions in mixed-model analysis of variance: A residual analysis approach
    • Oman, S.D. (1995). Checking the assumptions in mixed-model analysis of variance: A residual analysis approach. Comput. Stat. Data Anal., 20, 309-330.
    • (1995) Comput. Stat. Data Anal , vol.20 , pp. 309-330
    • Oman, S.D.1
  • 43
    • 34247227841 scopus 로고
    • Comments on 'Assessment of Local Influence'
    • Pena, D. (1986). Comments on 'Assessment of Local Influence'. J. R. Stat. Soc., Ser. B: Methodol., 48, 164-165.
    • (1986) J. R. Stat. Soc., Ser. B: Methodol , vol.48 , pp. 164-165
    • Pena, D.1
  • 44
    • 26044442109 scopus 로고    scopus 로고
    • Outliers, influential observations and missing data
    • Eds. D. Pena, G. Tiao and R. Tsay, pp
    • Pena, D. (2001). Outliers, influential observations and missing data. In A Course in Time Series Analysis, Eds. D. Pena, G. Tiao and R. Tsay, pp. 86-110.
    • (2001) A Course in Time Series Analysis , pp. 86-110
    • Pena, D.1
  • 45
    • 85011247446 scopus 로고    scopus 로고
    • A statistical test of single firm market power
    • Pickford, M. & Haslett, S. (1999). A statistical test of single firm market power. N. Z. Econo. Pap., 33, 39-58.
    • (1999) N. Z. Econo. Pap , vol.33 , pp. 39-58
    • Pickford, M.1    Haslett, S.2
  • 49
    • 84972496336 scopus 로고
    • That BLUP is a good thing: The estimation of random effects (Disc: p. 32-51)
    • Robinson, G.K. (1991). That BLUP is a good thing: The estimation of random effects (Disc: p. 32-51). Stat. Sci., 6, 15-32.
    • (1991) Stat. Sci , vol.6 , pp. 15-32
    • Robinson, G.K.1
  • 54
    • 0041512328 scopus 로고
    • Comment on 'That BLUP is a good thing: The estimation of random effects'
    • Speed, T. (1991). Comment on 'That BLUP is a good thing: The estimation of random effects'. Stat. Sci., 6, 42-44.
    • (1991) Stat. Sci , vol.6 , pp. 42-44
    • Speed, T.1
  • 56
    • 34247278443 scopus 로고    scopus 로고
    • A diagnostic for the General Linear Model: An Application to Time
    • Ph.D. thesis, Trinity College, Dublin, Dept of Statistics, TCD, Dublin 2, Ireland
    • Sullivan, C. (2001). A diagnostic for the General Linear Model: an Application to Time Series, Ph.D. thesis, Trinity College, Dublin, Dept of Statistics, TCD, Dublin 2, Ireland.
    • (2001) Series
    • Sullivan, C.1
  • 57
    • 84946656799 scopus 로고
    • The analysis of disturbances in regression analysis (Ref: V63, pp. 242-251)
    • Theil, H. (1965). The analysis of disturbances in regression analysis (Ref: V63, pp. 242-251). J. Am. Stat. Assoc., 60, pp. 1067-1079.
    • (1965) J. Am. Stat. Assoc , vol.60 , pp. 1067-1079
    • Theil, H.1
  • 58
    • 34247238555 scopus 로고    scopus 로고
    • Model Fitting and Checking, and the Kalman Filter
    • Eds. Pena, D, Tiao, G. and Tsay, R, pp, New York: Wiley
    • Tunnicliffe-Wilson, G. (2001). Model Fitting and Checking, and the Kalman Filter. In A Course in Time Series Analysis, Eds. Pena, D., Tiao, G. and Tsay, R., pp. 86-110. New York: Wiley.
    • (2001) A Course in Time Series Analysis , pp. 86-110
    • Tunnicliffe-Wilson, G.1
  • 59
    • 0003466536 scopus 로고
    • Philadelphia, PA: Society for Industrial and Applied Mathematics
    • Wahba, G. (1990). Spline models for observational data. Philadelphia, PA: Society for Industrial and Applied Mathematics.
    • (1990) Spline models for observational data
    • Wahba, G.1
  • 60
    • 0026565429 scopus 로고
    • Residual plots for repeated measures
    • Weiss, R.E. & Lazaro, C.G. (1992). Residual plots for repeated measures. Stat. Med., 11, 115-124.
    • (1992) Stat. Med , vol.11 , pp. 115-124
    • Weiss, R.E.1    Lazaro, C.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.