메뉴 건너뛰기




Volumn 37, Issue 3, 2007, Pages 359-372

Therapeutic drug monitoring of kidney transplant recipients using profiled support vector machines

Author keywords

Cyclosporine; Kidney transplantation; Neural networks; Sensitivity analysis; Support vector machines (SVMs); Therapeutic drug monitoring (TDM)

Indexed keywords

COMPUTER AIDED SOFTWARE ENGINEERING; DECISION MAKING; MULTILAYER NEURAL NETWORKS; PATIENT MONITORING; RECURRENT NEURAL NETWORKS; SENSITIVITY ANALYSIS; STATISTICAL METHODS; SUPPORT VECTOR MACHINES;

EID: 34247243518     PISSN: 10946977     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCC.2007.893279     Document Type: Article
Times cited : (10)

References (67)
  • 1
    • 0034193298 scopus 로고    scopus 로고
    • Neoral used in the renal transplant recipient
    • Suppl. Rev, May
    • P. Belitsky, "Neoral used in the renal transplant recipient," Transplant. Proc., vol. 32, no. 3A, pp. S10-S19, May 2000, (Suppl. Rev.).
    • (2000) Transplant. Proc , vol.32 , Issue.3 A
    • Belitsky, P.1
  • 2
    • 0025887582 scopus 로고
    • Factors influencing the pharmacokinetics of cyclosporine in man
    • Nov
    • A. Lindholm, "Factors influencing the pharmacokinetics of cyclosporine in man," Ther. Drug Monit., vol. 13, no. 6, pp. 465-477, Nov. 1991.
    • (1991) Ther. Drug Monit , vol.13 , Issue.6 , pp. 465-477
    • Lindholm, A.1
  • 3
    • 0031838725 scopus 로고    scopus 로고
    • NONMEM population pharmacokinetic modeling of orally administered cyclosporine from routine drug monitoring data after heart transplantation
    • Jun
    • J. Parke and B. G. Charles, "NONMEM population pharmacokinetic modeling of orally administered cyclosporine from routine drug monitoring data after heart transplantation," Ther. Drug Monit., vol. 20, no. 3, pp. 284-293, Jun. 1998.
    • (1998) Ther. Drug Monit , vol.20 , Issue.3 , pp. 284-293
    • Parke, J.1    Charles, B.G.2
  • 4
    • 0031969433 scopus 로고    scopus 로고
    • A population pharmacokinetic model of cyclosporine in the early postoperative phase in patients with liver transplants, and its predictive performance with Bayesian fitting
    • B. Charpiat, I. Falconi, V. Bréant, R. W. Jellife, J. M. Sab, C. Ducerf, N. Fourcade, A. Thomasson, and J. Baulieux, "A population pharmacokinetic model of cyclosporine in the early postoperative phase in patients with liver transplants, and its predictive performance with Bayesian fitting," Ther. Drug Monit., vol. 20, pp. 158-164, 1998.
    • (1998) Ther. Drug Monit , vol.20 , pp. 158-164
    • Charpiat, B.1    Falconi, I.2    Bréant, V.3    Jellife, R.W.4    Sab, J.M.5    Ducerf, C.6    Fourcade, N.7    Thomasson, A.8    Baulieux, J.9
  • 5
    • 0028928180 scopus 로고
    • Neural network predicted peak and trough gentamicin concentrations
    • M. E. Brier, J. M. Zurada, and G. R. Aronoff, "Neural network predicted peak and trough gentamicin concentrations," Pharm. Res., vol. 12, no. 3, pp. 406-412, 1995.
    • (1995) Pharm. Res , vol.12 , Issue.3 , pp. 406-412
    • Brier, M.E.1    Zurada, J.M.2    Aronoff, G.R.3
  • 6
    • 0027528980 scopus 로고
    • Feasibility of developing a neural network for prediction of human pharmacokinetic parameters from animal data
    • Mar
    • A. S. Hussain, R. D. Johnson, N. N. Vachharajani, and W. A. Ritschel, "Feasibility of developing a neural network for prediction of human pharmacokinetic parameters from animal data," Pharm. Res., vol. 10, no. 3, pp. 466-469, Mar. 1993.
    • (1993) Pharm. Res , vol.10 , Issue.3 , pp. 466-469
    • Hussain, A.S.1    Johnson, R.D.2    Vachharajani, N.N.3    Ritschel, W.A.4
  • 7
    • 0027381145 scopus 로고
    • Application of neural networks to pharmacodynamics
    • P. Veng-Pedersen and N. Modi, "Application of neural networks to pharmacodynamics," J. Pharm. Sci., vol. 82, pp. 918-926, 1993.
    • (1993) J. Pharm. Sci , vol.82 , pp. 918-926
    • Veng-Pedersen, P.1    Modi, N.2
  • 8
    • 0038355073 scopus 로고    scopus 로고
    • Pharmacodynamic population analysis in chronic renal failure using artificial neural networks - A comparative study
    • A. E. Gaweda, A. A. Jacobs, M. E. Brier, and J. M. Zurada, "Pharmacodynamic population analysis in chronic renal failure using artificial neural networks - A comparative study," Neural Netw., vol. 16, no. 5/6, pp. 841-845, 2003.
    • (2003) Neural Netw , vol.16 , Issue.5-6 , pp. 841-845
    • Gaweda, A.E.1    Jacobs, A.A.2    Brier, M.E.3    Zurada, J.M.4
  • 9
    • 34247236003 scopus 로고    scopus 로고
    • Prediction of two ranges of cyclosporine level (subtherapeutic and toxic) using feature subset selection and artificial neural networks
    • presented at the, Orlando, FL, Abstract 1274
    • S. Hirankam, C. Downs, W. Street, and R. A. Herman, "Prediction of two ranges of cyclosporine level (subtherapeutic and toxic) using feature subset selection and artificial neural networks," presented at the AAPS Annu. Meeting, vol. 2, no. 2. Orlando, FL, 2000, Abstract 1274.
    • (2000) AAPS Annu. Meeting , vol.2 , Issue.2
    • Hirankam, S.1    Downs, C.2    Street, W.3    Herman, R.A.4
  • 10
    • 34247241439 scopus 로고    scopus 로고
    • G. Camps-Valls, E. Soria-Olivas, B. Porta-Oltra, J. J. Pérez-Ruizo, J. D. Martin-Guerrero, A. J. Serrano-López, and N. V. Jiménez-Torres, A neural approach to cyclosporine dose prediction, presented at the World Congr. Med. Phys. Biomed. Eng., Chicago, IL, Jul. 2000.
    • G. Camps-Valls, E. Soria-Olivas, B. Porta-Oltra, J. J. Pérez-Ruizo, J. D. Martin-Guerrero, A. J. Serrano-López, and N. V. Jiménez-Torres, "A neural approach to cyclosporine dose prediction," presented at the World Congr. Med. Phys. Biomed. Eng., Chicago, IL, Jul. 2000.
  • 11
    • 0012934444 scopus 로고    scopus 로고
    • G. Camps-Valls, E. Soria-Olivas, J. D. Martin-Guerrero, J. J. Pérez-Ruixo, and N. V Jimenéz-Torres, Neural networks ensemble for cyclosporine concentration monitoring, in Lecture Notes in Computer Science, 2130, Proc. Int. Conf. Artif. Neural Netw. Vienna, Austria: Springer, Aug. 2001, pp. 706-711.
    • G. Camps-Valls, E. Soria-Olivas, J. D. Martin-Guerrero, J. J. Pérez-Ruixo, and N. V Jimenéz-Torres, "Neural networks ensemble for cyclosporine concentration monitoring," in Lecture Notes in Computer Science, vol. 2130, Proc. Int. Conf. Artif. Neural Netw. Vienna, Austria: Springer, Aug. 2001, pp. 706-711.
  • 14
    • 0028824489 scopus 로고    scopus 로고
    • M. Oellerich, V. W. Armstrong, B. Kahan, L. Shaw, D. W. Holt, R. Yatscoff, A. Lindholm, P. Halloran, K. Gallicano, and K. Wonigeit, Lake Louise consensus conference on cyclosporin monitoring in organ transplantation: Report of the consensus panel, Ther. Drug Monit., 17, pp. 642-654, Dec. 1995.
    • M. Oellerich, V. W. Armstrong, B. Kahan, L. Shaw, D. W. Holt, R. Yatscoff, A. Lindholm, P. Halloran, K. Gallicano, and K. Wonigeit, "Lake Louise consensus conference on cyclosporin monitoring in organ transplantation: Report of the consensus panel," Ther. Drug Monit., vol. 17, pp. 642-654, Dec. 1995.
  • 15
    • 34247208940 scopus 로고    scopus 로고
    • T. A. S. Assays, Manual Analitique. Rundix Cedex, France: Laboratories ABBOTT, 1999.
    • T. A. S. Assays, Manual Analitique. Rundix Cedex, France: Laboratories ABBOTT, 1999.
  • 16
    • 0003263256 scopus 로고    scopus 로고
    • Self-Organizing Maps
    • 3rd ed, Berlin, Germany: Springer-Verlag
    • T. Kohonen, Self-Organizing Maps, 3rd ed. in Springer Series in Information Sciences, vol. 30. Berlin, Germany: Springer-Verlag, 2001.
    • (2001) Springer Series in Information Sciences , vol.30
    • Kohonen, T.1
  • 18
    • 84902190454 scopus 로고    scopus 로고
    • A. Abraham and D. Steinberg, Is neural network a reliable forecaster on Earth? A MARS query!, in Lecture Notes in Computer Science, 2084, Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence, J. Mira and A. Prieto, Eds. Berlin, Germany: Springer-Verlag, 2001.
    • A. Abraham and D. Steinberg, "Is neural network a reliable forecaster on Earth? A MARS query!," in Lecture Notes in Computer Science, vol. 2084, Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence, J. Mira and A. Prieto, Eds. Berlin, Germany: Springer-Verlag, 2001.
  • 19
    • 34247221909 scopus 로고    scopus 로고
    • G. Camps-Valls. (2002, Jul.). Redes neuronales y máquinas de vectores soporte para la predicción y modelización de la concentratión valle de ciclosporina A (CyA) en pacientes con trasplante renal. Ph.D. dissertation, Dept. Eng. Electron., Univ. Valencia Valencia, Spain, [Online]. Available: http://www.uv.es/~gcamps
    • G. Camps-Valls. (2002, Jul.). Redes neuronales y máquinas de vectores soporte para la predicción y modelización de la concentratión valle de ciclosporina A (CyA) en pacientes con trasplante renal. Ph.D. dissertation, Dept. Eng. Electron., Univ. Valencia Valencia, Spain, [Online]. Available: http://www.uv.es/~gcamps
  • 20
    • 0031757661 scopus 로고    scopus 로고
    • Individualización posológica de ciclosporina en pacientes con trasplante renal: Propuesta de un modelo farmacocinético en predicción
    • B. Porta, J. J. Pérez-Ruixo, N. V. Jiménez, A. Sancho, and L. M. Pallardó, "Individualización posológica de ciclosporina en pacientes con trasplante renal: Propuesta de un modelo farmacocinético en predicción," Farm. Hosp., vol. 22, no. 4, pp. 181-187, 1998.
    • (1998) Farm. Hosp , vol.22 , Issue.4 , pp. 181-187
    • Porta, B.1    Pérez-Ruixo, J.J.2    Jiménez, N.V.3    Sancho, A.4    Pallardó, L.M.5
  • 23
    • 0022651554 scopus 로고
    • Demographics factors affecting the pharmacokinetics of cyclosporine estimated by radioinmunoassay
    • B. D. Kahan, W. G. Kramer, C. A. Wideman, S. M. Flechner, M. Lorber, and C. T. van Buren, "Demographics factors affecting the pharmacokinetics of cyclosporine estimated by radioinmunoassay," Transplantation, vol. 41, pp. 459-464, 1986.
    • (1986) Transplantation , vol.41 , pp. 459-464
    • Kahan, B.D.1    Kramer, W.G.2    Wideman, C.A.3    Flechner, S.M.4    Lorber, M.5    van Buren, C.T.6
  • 24
    • 0003410303 scopus 로고
    • Time series prediction. Forecasting the future and understanding the past
    • Santa Fe, NM, May 14-17
    • A. S. Weigend and N. A. Gershenfeld, "Time series prediction. Forecasting the future and understanding the past," in Proc. NATO Adv. Res. Workshop Comp. Time Ser. Anal. vol. 15, Santa Fe, NM, May 14-17, 1992, 1994.
    • (1992) Proc. NATO Adv. Res. Workshop Comp. Time Ser. Anal , vol.15
    • Weigend, A.S.1    Gershenfeld, N.A.2
  • 26
    • 0345381228 scopus 로고
    • Empirical pharmacokinetic predictions for cyclosporine using a time series neural network
    • M. E. Brier, "Empirical pharmacokinetic predictions for cyclosporine using a time series neural network," Pharm. Res., vol. 12, S363, 1995.
    • (1995) Pharm. Res , vol.12
    • Brier, M.E.1
  • 27
    • 0035249923 scopus 로고    scopus 로고
    • NNSYSID & NNCTRL - Tools for system identification and control with neural networks
    • Feb
    • M. Nørgaard, O. Ravn, and N. Poulsen, "NNSYSID & NNCTRL - Tools for system identification and control with neural networks," Inst. Electr. Eng. Comput. Control Eng. J., vol. 12, no. 1, pp. 29-36, Feb. 2001.
    • (2001) Inst. Electr. Eng. Comput. Control Eng. J , vol.12 , Issue.1 , pp. 29-36
    • Nørgaard, M.1    Ravn, O.2    Poulsen, N.3
  • 29
    • 34247268390 scopus 로고    scopus 로고
    • E. A. Wan. (1993, Nov.). Finite Impulse Response neural networks with applications in time series prediction. Ph.D. dissertation, Dept. Electr. Eng., Stanford Univ., Stanford, CA, [Online]. Available: http://www.ece.ogi.edu/~ericwan/
    • E. A. Wan. (1993, Nov.). Finite Impulse Response neural networks with applications in time series prediction. Ph.D. dissertation, Dept. Electr. Eng., Stanford Univ., Stanford, CA, [Online]. Available: http://www.ece.ogi.edu/~ericwan/
  • 31
    • 34247270602 scopus 로고    scopus 로고
    • E. A. Wan. (1993, Nov.). Modeling nonlinear dynamics with neural networks: Examples in time series prediction. Proc. 5th Workshop Neural Netw.: Academic/Industrial/NASA/Defense, WNN93/FNN93, San Francisco, CA, [Online]. 327-332. Available: http://www.ece.ogi.edu/ ~ericwan/
    • E. A. Wan. (1993, Nov.). Modeling nonlinear dynamics with neural networks: Examples in time series prediction. Proc. 5th Workshop Neural Netw.: Academic/Industrial/NASA/Defense, WNN93/FNN93, San Francisco, CA, [Online]. 327-332. Available: http://www.ece.ogi.edu/ ~ericwan/
  • 32
    • 0026895542 scopus 로고
    • The Gamma model - A new neural model for temporal processing
    • B. de Vries and J. C. Principe, "The Gamma model - A new neural model for temporal processing," Neural Netw., vol. 5, no. 4, pp. 565-576, 1992.
    • (1992) Neural Netw , vol.5 , Issue.4 , pp. 565-576
    • de Vries, B.1    Principe, J.C.2
  • 33
    • 0027542363 scopus 로고
    • The gamma filter - A new class of adaptive IIR filters with restricted feedback
    • Feb
    • J. C. Principe, B. de Vries, and P. G. deOliveira, "The gamma filter - A new class of adaptive IIR filters with restricted feedback," IEEE Trans. Signal Process., vol. 41, no. 2, pp. 649-656, Feb. 1993.
    • (1993) IEEE Trans. Signal Process , vol.41 , Issue.2 , pp. 649-656
    • Principe, J.C.1    de Vries, B.2    deOliveira, P.G.3
  • 34
    • 34247280083 scopus 로고
    • Modeling applications with the focused Gamma net
    • NIPS, Online, Available
    • J. C. Principe, B. de Vries, J. Kuo, and P. Guedes-de Olivera, (1991). Modeling applications with the focused Gamma net. Neural Inf. Process. Syst., NIPS. [Online] 143-150. Available: http://books.nips.cc/papers/files/nips04/
    • (1991) Neural Inf. Process. Syst , pp. 143-150
    • Principe, J.C.1    de Vries, B.2    Kuo, J.3    Guedes-de Olivera, P.4
  • 35
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman, "Finding structure in time," Cogn. Sci., vol. 14, pp. 179-211, 1988.
    • (1988) Cogn. Sci , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 39
    • 84887252594 scopus 로고    scopus 로고
    • V N. Vapnik, S. Golowich, and A. Smola, Support vector method for function approximation, regression estimation, and signal processing, in Neural Inf. Process. Syst., M. Mozer, M. Jordan, and and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 169-184.
    • V N. Vapnik, S. Golowich, and A. Smola, "Support vector method for function approximation, regression estimation, and signal processing," in Neural Inf. Process. Syst., M. Mozer, M. Jordan, and and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 169-184.
  • 41
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Mar
    • C.-W. Hsu and C.-J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 415-425, Mar. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 42
  • 46
    • 50249155939 scopus 로고    scopus 로고
    • Shrinking the tube: A new support vector regression algorithm
    • M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT Press
    • B. Schölkopf, P. L. Bartlett, A. Smola, and R. Williamson, "Shrinking the tube: A new support vector regression algorithm," in Advances in Neural Information Processing System, M. S. Kearns, S. A. Solla, and D. A. Cohn, Eds. Cambridge, MA: MIT Press, 1999, vol. 11, pp. 330-336.
    • (1999) Advances in Neural Information Processing System , vol.11 , pp. 330-336
    • Schölkopf, B.1    Bartlett, P.L.2    Smola, A.3    Williamson, R.4
  • 47
    • 34247250086 scopus 로고    scopus 로고
    • Y. Lin, Y. Lee, and G. Wahba, Support vector machines for classification in nonstandard situations, Dept. Stat. Univ. Wisconsin at Madison,Tech. Rep. 1016, 2000.
    • Y. Lin, Y. Lee, and G. Wahba, "Support vector machines for classification in nonstandard situations," Dept. Stat. Univ. Wisconsin at Madison,Tech. Rep. 1016, 2000.
  • 48
    • 0036505650 scopus 로고    scopus 로고
    • Fuzzy support vector machines
    • Mar
    • C.-F. Lin and S.-D. Wang, "Fuzzy support vector machines," IEEE Trans. Neural Netw., vol. 13, no. 2, pp. 464-411, Mar. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.2 , pp. 464-411
    • Lin, C.-F.1    Wang, S.-D.2
  • 49
    • 28244467848 scopus 로고    scopus 로고
    • Posterior probability support vector machines for unbalanced data
    • Nov
    • Q. Tao, G.-W. Wu, F.-Y. Wang, and J. Wang, "Posterior probability support vector machines for unbalanced data," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1561-1573, Nov. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.6 , pp. 1561-1573
    • Tao, Q.1    Wu, G.-W.2    Wang, F.-Y.3    Wang, J.4
  • 50
    • 0012040778 scopus 로고    scopus 로고
    • Ph.D. dissertation, Dpto. Teoría de la Señal y Comunicaciones, Univ. Carlos III Madrid, Madrid, Spain, Dec
    • F. Pérez-Cruz, "Máquina de vectores soporte adaptativa y compacta," Ph.D. dissertation, Dpto. Teoría de la Señal y Comunicaciones, Univ. Carlos III Madrid, Madrid, Spain, Dec. 2000.
    • (2000) Máquina de vectores soporte adaptativa y compacta
    • Pérez-Cruz, F.1
  • 53
    • 0031553660 scopus 로고    scopus 로고
    • Financial time series modeling with discounted least squares back-propagation
    • A. N. Refenes, Y. Bentz, D. W. Bunn, A. N. Burgess, and A. D. Zapranis, "Financial time series modeling with discounted least squares back-propagation," Neurocomputing, vol. 14, pp. 123-138, 1997.
    • (1997) Neurocomputing , vol.14 , pp. 123-138
    • Refenes, A.N.1    Bentz, Y.2    Bunn, D.W.3    Burgess, A.N.4    Zapranis, A.D.5
  • 54
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • F. E. H. Tay and L. J. Cao, "Modified support vector machines in financial time series forecasting," Neurocomputing, vol. 48, pp. 847-861, 2002.
    • (2002) Neurocomputing , vol.48 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.J.2
  • 55
    • 13244255318 scopus 로고    scopus 로고
    • G. Camps-Valls, A. Chalk, A. Serrano-Lopez, J. D. Martin-Guerrero, and E. Sonnhammer Profiled support vector machines for antisense oligonucleotide efficacy prediction. BMC Bioinf. [Online], (5), 135. Available OpenAccess: http://www.biomedcentral.eom/1471-2105/5/135
    • G. Camps-Valls, A. Chalk, A. Serrano-Lopez, J. D. Martin-Guerrero, and E. Sonnhammer Profiled support vector machines for antisense oligonucleotide efficacy prediction. BMC Bioinf. [Online], (5), 135. Available OpenAccess: http://www.biomedcentral.eom/1471-2105/5/135
  • 56
    • 28244484667 scopus 로고    scopus 로고
    • Perceptual adaptive insensitivity for support vector machine image coding
    • Nov
    • G. Gómez-Pérez, G. Camps-Valls, J. Gutiérrez, and J. Malo, "Perceptual adaptive insensitivity for support vector machine image coding," IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1574-1581, Nov. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.6 , pp. 1574-1581
    • Gómez-Pérez, G.1    Camps-Valls, G.2    Gutiérrez, J.3    Malo, J.4
  • 57
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S. S. Keerthi and C.-J. Lin, "Asymptotic behaviors of support vector machines with Gaussian kernel," Neural Comput., vol. 15, no. 7, pp. 1667-1689, 2003.
    • (2003) Neural Comput , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 58
    • 34247239160 scopus 로고    scopus 로고
    • A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. National Taiwan Univ. Dept. Comput. Sci. Inf. Eng., Taipei, Taiwan, ROC
    • Tech. Rep, Online, Available
    • H.-T. Lin. and C.-J. Lin (2003). A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods. National Taiwan Univ. Dept. Comput. Sci. Inf. Eng., Taipei, Taiwan, ROC, Tech. Rep., [Online]. Available: http://www.csie.ntu.edu.twr/~cjlin/papers/tanh.pdf
    • (2003)
    • Lin, H.-T.1    Lin, C.-J.2
  • 59
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik, "Support vector networks," Mach. Learn., vol. 20, pp. 273-297, 1995.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 61
    • 56749117943 scopus 로고    scopus 로고
    • In defense of one-vs.-all classification
    • R. Rifkin and A. Klautau, "In defense of one-vs.-all classification," J. Mach. Learn. Res., vol. 5, no. 1, pp. 101-141, 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , Issue.1 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 62
    • 34247202976 scopus 로고    scopus 로고
    • P. S. Bradley, U. M. Fayyad, and O. L. Mangasarian, Mathematical programming for data mining: Formulations and challenges, Comput. Sci. Dept., Univ. Winsconsin, Madison, WI, Math. Prog. Tech. Rep. 98-01, Tech. Rep. MSR-TR-98-04, Jan. 1998.
    • P. S. Bradley, U. M. Fayyad, and O. L. Mangasarian, "Mathematical programming for data mining: Formulations and challenges,", Comput. Sci. Dept., Univ. Winsconsin, Madison, WI, Math. Prog. Tech. Rep. 98-01, Tech. Rep. MSR-TR-98-04, Jan. 1998.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.