메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 313-319

A hierarchical approach to efficient reinforcement learning in deterministic domains

Author keywords

Factored representations; Hierarchical reinforcement learning; Reinforcement learning; Sample complexity

Indexed keywords

COMPUTATIONAL METHODS; HIERARCHICAL SYSTEMS; LEARNING ALGORITHMS; POLYNOMIAL APPROXIMATION; PROBLEM SOLVING; STATE SPACE METHODS;

EID: 34247204877     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1160633.1160686     Document Type: Conference Paper
Times cited : (16)

References (16)
  • 1
    • 0346942368 scopus 로고    scopus 로고
    • Decision-theoretic planning: Structural assumptions and computational leverage
    • Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Structural assumptions and computational leverage. Journal of Artificial Intelligence Research, 11:1-94, 1999.
    • (1999) Journal of Artificial Intelligence Research , vol.11 , pp. 1-94
    • Boutilier, C.1    Dean, T.2    Hanks, S.3
  • 2
    • 0041965975 scopus 로고    scopus 로고
    • R-MAX - a general polynomial time algorithm for near-optimal reinforcement learning
    • Ronen I. Brafman and Moshe Tennenholtz. R-MAX - a general polynomial time algorithm for near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213-231, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 213-231
    • Brafman, R.I.1    Tennenholtz, M.2
  • 3
    • 0002278788 scopus 로고    scopus 로고
    • Hierarchical reinforcement learning with the MAXQ value function decomposition
    • Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decomposition. Journal of Artificial Intelligence Research, 13:227-303, 2000.
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 227-303
    • Dietterich, T.G.1
  • 5
    • 0003506152 scopus 로고    scopus 로고
    • State abstraction in MAXQ hierarchical reinforcement learning
    • Thomas G. Dietterich. State abstraction in MAXQ hierarchical reinforcement learning. In Advances in Neural Information Processing Systems 12, pages 994-1000, 2000.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 994-1000
    • Dietterich, T.G.1
  • 11
    • 0036832954 scopus 로고    scopus 로고
    • Near-optimal reinforcement learning in polynomial time
    • Michael J. Kearns and Satinder P. Singh. Near-optimal reinforcement learning in polynomial time. Machine Learning, 49(2-3):209-232, 2002.
    • (2002) Machine Learning , vol.49 , Issue.2-3 , pp. 209-232
    • Kearns, M.J.1    Singh, S.P.2
  • 13
    • 0027684215 scopus 로고
    • Prioritized sweeping: Reinforcement learning with less data and less real time
    • Andrew W. Moore and Christopher G. Atkeson. Prioritized sweeping: Reinforcement learning with less data and less real time. Machine Learning, 13:103-130, 1993.
    • (1993) Machine Learning , vol.13 , pp. 103-130
    • Moore, A.W.1    Atkeson, C.G.2
  • 15
    • 85132026293 scopus 로고
    • Integrated architectures for learning, planning, and reacting based on approximating dynamic programming
    • Austin, TX, Morgan Kaufmann
    • Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approximating dynamic programming. In Proceedings of the Seventh International Conference on Machine Learning, pages 216-224, Austin, TX, 1990. Morgan Kaufmann.
    • (1990) Proceedings of the Seventh International Conference on Machine Learning , pp. 216-224
    • Sutton, R.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.