메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 783-785

Learning to cooperate in multi-agent social dilemmas

Author keywords

[No Author keywords available]

Indexed keywords

PARETO OUTCOMES; Q-LEARNING; REINFORCEMENT LEARNING (RL) ALGORITHMS;

EID: 34247191514     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1160633.1160770     Document Type: Conference Paper
Times cited : (49)

References (5)
  • 1
    • 0036531878 scopus 로고    scopus 로고
    • Multiagent learning using a variable learning rate
    • M. Bowling and M. Veloso. Multiagent learning using a variable learning rate. Artificial Intelligence, 136:215-250, 2002.
    • (2002) Artificial Intelligence , vol.136 , pp. 215-250
    • Bowling, M.1    Veloso, M.2
  • 2
    • 31844455339 scopus 로고    scopus 로고
    • Learning to compete, compromise, and cooperate in repeated general-sum games
    • to appear
    • J. W. Crandall and M. A. Goodrich. Learning to compete, compromise, and cooperate in repeated general-sum games. In Proc. of ICML 2005, to appear.
    • Proc. of ICML 2005
    • Crandall, J.W.1    Goodrich, M.A.2
  • 4
    • 1942452233 scopus 로고    scopus 로고
    • Learning to cooperate in a social dilemma: A satisficing approach to bargaining
    • J. L. Stimpson and M. A. Goodrich. Learning to cooperate in a social dilemma: A satisficing approach to bargaining. In Proceedings of ICML, 2003.
    • (2003) Proceedings of ICML
    • Stimpson, J.L.1    Goodrich, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.