-
1
-
-
0004220631
-
-
Scientific American Library, W.H. Freeman Co, San Francisco (CA)
-
Winfree A. The timing of biological clocks (1986), Scientific American Library, W.H. Freeman Co, San Francisco (CA)
-
(1986)
The timing of biological clocks
-
-
Winfree, A.1
-
3
-
-
0035997405
-
Centennial history of Hilbert's 16th problem
-
Ilyashenko Y. Centennial history of Hilbert's 16th problem. Bull Amer Math Soc 39 (2002) 301-354
-
(2002)
Bull Amer Math Soc
, vol.39
, pp. 301-354
-
-
Ilyashenko, Y.1
-
4
-
-
0037246396
-
Hilbert's 16th problem and bifurcations of planar polynomial vector fields
-
Li J. Hilbert's 16th problem and bifurcations of planar polynomial vector fields. Int J Bifurc Chaos 13 (2003) 47-106
-
(2003)
Int J Bifurc Chaos
, vol.13
, pp. 47-106
-
-
Li, J.1
-
6
-
-
84956262569
-
Finitess theorems for limit cycles
-
Ilyashenko Y. Finitess theorems for limit cycles. Russ Math Surveys 45 (1990) 129-203
-
(1990)
Russ Math Surveys
, vol.45
, pp. 129-203
-
-
Ilyashenko, Y.1
-
7
-
-
0003264465
-
Theory of limit cycles
-
American Mathematical Society, Boston
-
Ye Y. Theory of limit cycles. Trans Math Monographs vol. 66 (1986), American Mathematical Society, Boston
-
(1986)
Trans Math Monographs
, vol.66
-
-
Ye, Y.1
-
8
-
-
0001171535
-
Bifurcations of limit cycles forming compound eyes in the cubic system
-
Li J., and Huang Q. Bifurcations of limit cycles forming compound eyes in the cubic system. Chin Ann Math B 8 (1987) 391-403
-
(1987)
Chin Ann Math B
, vol.8
, pp. 391-403
-
-
Li, J.1
Huang, Q.2
-
9
-
-
2942666280
-
Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations
-
Zhang T., Han M., Zan H., and Meng X. Bifurcations of limit cycles for a cubic Hamiltonian system under quartic perturbations. Chaos, Solitons & Fractals 22 (2004) 1127-1138
-
(2004)
Chaos, Solitons & Fractals
, vol.22
, pp. 1127-1138
-
-
Zhang, T.1
Han, M.2
Zan, H.3
Meng, X.4
-
11
-
-
0000876447
-
The limit cycle of the van der Pol equation is not algebraic
-
Odani K. The limit cycle of the van der Pol equation is not algebraic. J Differen Equat 115 (1995) 146-152
-
(1995)
J Differen Equat
, vol.115
, pp. 146-152
-
-
Odani, K.1
-
12
-
-
0346684959
-
Transition between two oscillation modes
-
López-Ruiz R., and Pomeau Y. Transition between two oscillation modes. Phys Rev E 55 (1997) R3820-R3823
-
(1997)
Phys Rev E
, vol.55
-
-
López-Ruiz, R.1
Pomeau, Y.2
-
13
-
-
0000923674
-
On Liénard's equation
-
Springer, New York
-
Lins A., de Melo W., and Pugh C.C. On Liénard's equation. Lectures notes in math vol. 597 (1977), Springer, New York 355
-
(1977)
Lectures notes in math
, vol.597
, pp. 355
-
-
Lins, A.1
de Melo, W.2
Pugh, C.C.3
-
15
-
-
0000940704
-
The limit cycles of Liénard equations in the strongly nonlinear regime
-
López J.L., and López-Ruiz R. The limit cycles of Liénard equations in the strongly nonlinear regime. Chaos, Solitons & Fractals 11 (2000) 747-756
-
(2000)
Chaos, Solitons & Fractals
, vol.11
, pp. 747-756
-
-
López, J.L.1
López-Ruiz, R.2
-
16
-
-
0001720655
-
Number of limit cycles of the Liénard equation
-
Giacomini H., and Neukirch S. Number of limit cycles of the Liénard equation. Phys Rev E 56 (1997) 3809-3813
-
(1997)
Phys Rev E
, vol.56
, pp. 3809-3813
-
-
Giacomini, H.1
Neukirch, S.2
-
18
-
-
3142693542
-
On limit cycle approximations in the van der Pol oscillator
-
Padín M.S., Robbio F.I., Moiola J.L., and Chen G. On limit cycle approximations in the van der Pol oscillator. Chaos, Solitons & Fractals 23 (2005) 207-220
-
(2005)
Chaos, Solitons & Fractals
, vol.23
, pp. 207-220
-
-
Padín, M.S.1
Robbio, F.I.2
Moiola, J.L.3
Chen, G.4
-
19
-
-
0006885139
-
Bifurcation curves of limit cycles in some Liénard systems
-
López-Ruiz R., and López J.L. Bifurcation curves of limit cycles in some Liénard systems. Int J Bifurcat Chaos 10 (2000) 971-980
-
(2000)
Int J Bifurcat Chaos
, vol.10
, pp. 971-980
-
-
López-Ruiz, R.1
López, J.L.2
-
20
-
-
0037410896
-
Number and amplitude of limit cycles emerging from topologically equivalent perturbed centers
-
López J.L., and López-Ruiz R. Number and amplitude of limit cycles emerging from topologically equivalent perturbed centers. Chaos, Solitons & Fractals 17 (2003) 135-143
-
(2003)
Chaos, Solitons & Fractals
, vol.17
, pp. 135-143
-
-
López, J.L.1
López-Ruiz, R.2
-
21
-
-
0032633538
-
A perturbation method based on integrating factors
-
Van Horssen W.T. A perturbation method based on integrating factors. SIAM J Appl Math 59 (1999) 1427-1443
-
(1999)
SIAM J Appl Math
, vol.59
, pp. 1427-1443
-
-
Van Horssen, W.T.1
|