-
2
-
-
24944468108
-
-
(b) Stahl, S. S. Science 2005, 309, 1824-1826.
-
(2005)
Science
, vol.309
, pp. 1824-1826
-
-
Stahl, S.S.1
-
5
-
-
33750166737
-
-
(e) Gligorich, K. M.; Sigman, M. S. Angew. Chem., Int. Ed. 2006, 45, 6612-6615.
-
(2006)
Angew. Chem., Int. Ed
, vol.45
, pp. 6612-6615
-
-
Gligorich, K.M.1
Sigman, M.S.2
-
8
-
-
0036738419
-
-
(h) Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G.-J.; Dijksman, A. Acc. Chem. Res. 2002, 35, 774-781.
-
(2002)
Acc. Chem. Res
, vol.35
, pp. 774-781
-
-
Sheldon, R.A.1
Arends, I.W.C.E.2
ten Brink, G.-J.3
Dijksman, A.4
-
10
-
-
0034828614
-
-
(a) Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. J. Am. Chem. Soc. 2001, 123, 7188-7189.
-
(2001)
J. Am. Chem. Soc
, vol.123
, pp. 7188-7189
-
-
Stahl, S.S.1
Thorman, J.L.2
Nelson, R.C.3
Kozee, M.A.4
-
11
-
-
4143086010
-
-
(b) Konnick, M. M.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 10212-10213.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 10212-10213
-
-
Konnick, M.M.1
Guzei, I.A.2
Stahl, S.S.3
-
12
-
-
33645467565
-
-
For extensive discussion of Pd decomposition during catalytic turnover, see
-
For extensive discussion of Pd decomposition during catalytic turnover, see: Steinhoff, B. A.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 4348-4355.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 4348-4355
-
-
Steinhoff, B.A.1
Stahl, S.S.2
-
13
-
-
3543113906
-
-
II-mediated substrate oxidation. For leading references to mechanistic studies of reactions under catalytic conditions, see: (a) Mueller, J. A.; Goller, C. P.; Sigman, M. S. J. Am. Chem. Soc. 2004, 126, 9724-9734.
-
II-mediated substrate oxidation. For leading references to mechanistic studies of reactions under catalytic conditions, see: (a) Mueller, J. A.; Goller, C. P.; Sigman, M. S. J. Am. Chem. Soc. 2004, 126, 9724-9734.
-
-
-
-
14
-
-
4544248275
-
-
(b) Steinhoff, B. A.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 11268-11278.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 11268-11278
-
-
Steinhoff, B.A.1
Guzei, I.A.2
Stahl, S.S.3
-
15
-
-
85153301407
-
-
II-hydride species in the catalytic cycle, and a stoichiometric Brønsted base is employed to react with the acid formed upon HX reductive elimination from the Pd-hydride species. For experimental studies of this proposed reactivity, see: (a) Amatore, C.; Jutand, A.; Meyer, G.; Carelli, I.; Chiarotto, I. Eur. J. Inorg. Chem. 2000, 1855-1859.
-
II-hydride species in the catalytic cycle, and a stoichiometric Brønsted base is employed to react with the acid formed upon HX reductive elimination from the Pd-hydride species. For experimental studies of this proposed reactivity, see: (a) Amatore, C.; Jutand, A.; Meyer, G.; Carelli, I.; Chiarotto, I. Eur. J. Inorg. Chem. 2000, 1855-1859.
-
-
-
-
17
-
-
11444250482
-
-
For computational studies, see: a
-
For computational studies, see: (a) Landis, C. R.; Morales, C. M.; Stahl, S. S. J. Am. Chem. Soc. 2004, 126, 16302-16303.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 16302-16303
-
-
Landis, C.R.1
Morales, C.M.2
Stahl, S.S.3
-
20
-
-
33846551900
-
-
(d) Popp, B. V.; Wendlandt, J. E.; Landis, C. R.; Stahl, S. S. Angew. Chem., Int. Ed. 2007, 46, 601-604.
-
(2007)
Angew. Chem., Int. Ed
, vol.46
, pp. 601-604
-
-
Popp, B.V.1
Wendlandt, J.E.2
Landis, C.R.3
Stahl, S.S.4
-
21
-
-
84943925866
-
-
For examples, see: a
-
For examples, see: (a) Hosokawa, T.; Murahashi, S.-I. Acc. Chem. Res. 1990, 23, 49-54.
-
(1990)
Acc. Chem. Res
, vol.23
, pp. 49-54
-
-
Hosokawa, T.1
Murahashi, S.-I.2
-
22
-
-
0032886391
-
-
(b) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750-6755.
-
(1999)
J. Org. Chem
, vol.64
, pp. 6750-6755
-
-
Nishimura, T.1
Onoue, T.2
Ohe, K.3
Uemura, S.4
-
24
-
-
14844324986
-
-
(a) Privalov, T.; Linde, C.; Zetterberg, K.; Moberg, C. Organometallics 2005, 24, 885-893.
-
(2005)
Organometallics
, vol.24
, pp. 885-893
-
-
Privalov, T.1
Linde, C.2
Zetterberg, K.3
Moberg, C.4
-
25
-
-
25444454085
-
-
(b) Keith, J. M.; Nielsen, R. J.; Oxgaard, J.; Goddard, W. A., III. J. Am. Chem. Soc. 2005, 127, 13172-13179.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 13172-13179
-
-
Keith, J.M.1
Nielsen, R.J.2
Oxgaard, J.3
Goddard III, W.A.4
-
26
-
-
33644638340
-
-
Denney, M. C.; Smythe, N. A.; Cetto, K. L.; Kemp, R. A.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 2508-2509.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 2508-2509
-
-
Denney, M.C.1
Smythe, N.A.2
Cetto, K.L.3
Kemp, R.A.4
Goldberg, K.I.5
-
27
-
-
33745688109
-
-
Konnick, M. M.; Gandhi, B. A.; Guzei, I. A.; Stahl, S. S. Angew. Chem., Int. Ed. 2006, 45, 2904-2907.
-
(2006)
Angew. Chem., Int. Ed
, vol.45
, pp. 2904-2907
-
-
Konnick, M.M.1
Gandhi, B.A.2
Guzei, I.A.3
Stahl, S.S.4
-
28
-
-
33846146388
-
-
Keith, J. M.; Muller, R. P.; Kemp, R. A.; Goldberg, K. I.; Goddard, W. A., III; Oxgaard, J. Inorg. Chem. 2006, 45, 9631-9633.
-
(2006)
Inorg. Chem
, vol.45
, pp. 9631-9633
-
-
Keith, J.M.1
Muller, R.P.2
Kemp, R.A.3
Goldberg, K.I.4
Goddard III, W.A.5
Oxgaard, J.6
-
29
-
-
0042531833
-
-
A beneficial effect of carboxylic acid additives has been noted in several studies of aerobic palladium oxidation catalysis: (a) Dams, M, De Vos, D. E, Celen, S, Jacobs, P. A. Angew. Chem, Int. Ed. 2003, 42, 3512-3515
-
A beneficial effect of carboxylic acid additives has been noted in several studies of aerobic palladium oxidation catalysis: (a) Dams, M.; De Vos, D. E.; Celen, S.; Jacobs, P. A. Angew. Chem., Int. Ed. 2003, 42, 3512-3515.
-
-
-
-
30
-
-
0042865830
-
-
(b) Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. Angew. Chem., Int. Ed. 2003, 42, 3810-3813.
-
(2003)
Angew. Chem., Int. Ed
, vol.42
, pp. 3810-3813
-
-
Jensen, D.R.1
Schultz, M.J.2
Mueller, J.A.3
Sigman, M.S.4
-
31
-
-
17744365015
-
-
C
-
(C) Schultz, M. J.; Hamilton, S. S.; Jensen, D. R.; Sigman, M. S. J. Org. Chem. 2005, 70, 3343-3352.
-
(2005)
J. Org. Chem
, vol.70
, pp. 3343-3352
-
-
Schultz, M.J.1
Hamilton, S.S.2
Jensen, D.R.3
Sigman, M.S.4
-
32
-
-
33745725828
-
-
(d) Rogers, M. M.; Wendlandt, J. E.; Guzei, I. A.; Stahl, S. S. Org. Lett. 2006, 8, 2257-2260.
-
(2006)
Org. Lett
, vol.8
, pp. 2257-2260
-
-
Rogers, M.M.1
Wendlandt, J.E.2
Guzei, I.A.3
Stahl, S.S.4
-
33
-
-
34247168636
-
-
Frisch; M. J. et al. Gaussian 03 (revisions D.01 and B.05); Gaussian Inc.: Pittsburgh, PA, 2004.
-
Frisch; M. J. et al. Gaussian 03 (revisions D.01 and B.05); Gaussian Inc.: Pittsburgh, PA, 2004.
-
-
-
-
36
-
-
0345491105
-
-
Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
-
(1988)
Phys. Rev. B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
37
-
-
11744322674
-
-
The Stuttgart RSC 1997 ECP basis set for Pd was obtained from the Extensible Computational Chemistry Environment Basis Set Database, version 02/25/04, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352 and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. Contact Karen Schuchardt for further information. (b) Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123-141.
-
(a) The Stuttgart RSC 1997 ECP basis set for Pd was obtained from the Extensible Computational Chemistry Environment Basis Set Database, version 02/25/04, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, WA 99352 and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830. Contact Karen Schuchardt for further information. (b) Andrae, D.; Häussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. Theor. Chim. Acta 1990, 77, 123-141.
-
-
-
-
41
-
-
84961980477
-
-
(c) Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999-3093.
-
(2005)
Chem. Rev
, vol.105
, pp. 2999-3093
-
-
Tomasi, J.1
Mennucci, B.2
Cammi, R.3
-
42
-
-
0031209054
-
-
For references on our cunent approach, see: d
-
For references on our cunent approach, see: (d) Cancès, E.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 1997, 107, 3032-3041.
-
(1997)
J. Chem. Phys
, vol.107
, pp. 3032-3041
-
-
Cancès, E.1
Mennucci, B.2
Tomasi, J.3
-
44
-
-
0031553301
-
-
(f) Mennucci, B.; Cancès, E.; Tomasi, J. J. Phys. Chem. B 1997, 101, 10506-10517.
-
(1997)
J. Phys. Chem. B
, vol.101
, pp. 10506-10517
-
-
Mennucci, B.1
Cancès, E.2
Tomasi, J.3
-
45
-
-
84962428823
-
-
(g) Tomasi, J.; Mennucci, B.; Cancès, E. J. Mol. Struct. (Theochem) 1999, 464, 211-226.
-
(1999)
J. Mol. Struct. (Theochem)
, vol.464
, pp. 211-226
-
-
Tomasi, J.1
Mennucci, B.2
Cancès, E.3
-
46
-
-
36148995600
-
-
Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
-
(1985)
J. Chem. Phys
, vol.83
, pp. 735-746
-
-
Reed, A.E.1
Weinstock, R.B.2
Weinhold, F.3
-
47
-
-
0003915529
-
-
Theoretical Chemistry Institute: University of Wisconsin-Madison: Madison, WI
-
Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO 5.0; Theoretical Chemistry Institute: University of Wisconsin-Madison: Madison, WI, 2001.
-
(2001)
NBO 5.0
-
-
Glendening, E.D.1
Badenhoop, J.K.2
Reed, A.E.3
Carpenter, J.E.4
Bohmann, J.A.5
Morales, C.M.6
Weinhold, F.7
-
48
-
-
45449124752
-
-
Our use of spin-projection conections was previously discussed in the Supporting Information of ref 6a. For additional references, see: (a) Yamaguchi, K, Jensen, F, Dorigo, A, Houk, K. N. Chem. Phys. Lett. 1988, 149, 537-542
-
Our use of spin-projection conections was previously discussed in the Supporting Information of ref 6a. For additional references, see: (a) Yamaguchi, K.; Jensen, F.; Dorigo, A.; Houk, K. N. Chem. Phys. Lett. 1988, 149, 537-542.
-
-
-
-
49
-
-
0001990757
-
-
(b) Yamanaka, S.; Kawakami, T.; Nagao, H.; Yamaguchi, K. Chem. Phys. Lett. 1994, 231, 25-33.
-
(1994)
Chem. Phys. Lett
, vol.231
, pp. 25-33
-
-
Yamanaka, S.1
Kawakami, T.2
Nagao, H.3
Yamaguchi, K.4
-
50
-
-
2442481958
-
-
(a) Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. J. Comput. Chem. 1996, 17, 49-56.
-
(1996)
J. Comput. Chem
, vol.17
, pp. 49-56
-
-
Peng, C.1
Ayala, P.Y.2
Schlegel, H.B.3
Frisch, M.J.4
-
54
-
-
34247160865
-
-
In a recent study of the oxygenation of an (NHC)2Pd 0 complex (ref 6d, we compared the results of gas-phase- and implicit toluene optimized (IEF-PCM) stationary-point calculations. We found that the relative total energies varied by less than 1 kcal/mol between the optimization methods, and the stationary-point geometries changed very little upon inclusion of the implicit solvation model. Therefore, we expect that implicit toluene solvation will have little effect on the gas-phase IRC results presented in this study
-
0 complex (ref 6d), we compared the results of gas-phase- and implicit toluene optimized (IEF-PCM) stationary-point calculations. We found that the relative total energies varied by less than 1 kcal/mol between the optimization methods, and the stationary-point geometries changed very little upon inclusion of the implicit solvation model. Therefore, we expect that implicit toluene solvation will have little effect on the gas-phase IRC results presented in this study.
-
-
-
-
55
-
-
34247095596
-
-
Frisch, M. J. et al. Gaussian 98 (revision A.9); Gaussian, Inc.: Pittsburgh, PA, 2001.
-
Frisch, M. J. et al. Gaussian 98 (revision A.9); Gaussian, Inc.: Pittsburgh, PA, 2001.
-
-
-
-
56
-
-
0032371420
-
-
Harvey, J. N.; Aschi, M.; Schwarz, H.; Koch, W. Theor. Chem. Acc. 1998, 99, 95-99.
-
(1998)
Theor. Chem. Acc
, vol.99
, pp. 95-99
-
-
Harvey, J.N.1
Aschi, M.2
Schwarz, H.3
Koch, W.4
-
57
-
-
34247106706
-
-
Benchmarking calculations comparing the energies of Pd complexes bearing IMe and full IMes ligand were performed, and the results suggest that substitution of IMes with IMe has only a small impact on the relative energies ±1-4 kcal/mol, See Supporting Information Figure S1
-
Benchmarking calculations comparing the energies of Pd complexes bearing IMe and full IMes ligand were performed, and the results suggest that substitution of IMes with IMe has only a small impact on the relative energies (±1-4 kcal/mol). See Supporting Information Figure S1.
-
-
-
-
58
-
-
34247100214
-
-
These results are consistent with previous studies by Goddard and co-workers in which they examined other possible dioxygen insertion pathways without success, see: refs 8b and 11
-
These results are consistent with previous studies by Goddard and co-workers in which they examined other possible dioxygen insertion pathways without success, see: refs 8b and 11.
-
-
-
-
60
-
-
34247130476
-
-
In the computational study of the oxygenation of 12 ref 11, Goddard et al. indicate that the HOO fragment rotates to allow for triplet-singlet surface crossing and formation of the Pd-O bond. However, the energetics or structural requirements for such a rearrangement are not described
-
In the computational study of the oxygenation of 12 (ref 11), Goddard et al. indicate that the HOO fragment rotates to allow for triplet-singlet surface crossing and formation of the Pd-O bond. However, the energetics or structural requirements for such a rearrangement are not described.
-
-
-
-
61
-
-
0000989849
-
-
(a) Endicott, J. F.; Wong, C.-L.; Inoue, T.; Natarajan, P. Inorg. Chem. 1979, 18, 450-454.
-
(1979)
Inorg. Chem
, vol.18
, pp. 450-454
-
-
Endicott, J.F.1
Wong, C.-L.2
Inoue, T.3
Natarajan, P.4
-
66
-
-
26444441381
-
-
(a) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754-13755.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 13754-13755
-
-
Davies, D.L.1
Donald, S.M.A.2
Macgregor, S.A.3
-
69
-
-
33947086817
-
-
For early examples, see: a
-
For early examples, see: (a) Valentine, J. S. Chem. Rev. 1973, 73, 235-245.
-
(1973)
Chem. Rev
, vol.73
, pp. 235-245
-
-
Valentine, J.S.1
-
71
-
-
19944427494
-
-
For recent examples, see: a
-
For recent examples, see: (a) Aboelella, N. W.; Kryatov, S. V.; Gherman, B. F.; Brennessel, W. W.; Young, V. G., Jr.; Sarangi, R.; Rybak-Akimova, E. V.; Hodgson, K. O.; Hedman, B.; Solomon, E. I.; Cramer, C. J.; Tolman, W. B. J. Am. Chem. Soc. 2004, 126, 16896-16911.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 16896-16911
-
-
Aboelella, N.W.1
Kryatov, S.V.2
Gherman, B.F.3
Brennessel, W.W.4
Young Jr., V.G.5
Sarangi, R.6
Rybak-Akimova, E.V.7
Hodgson, K.O.8
Hedman, B.9
Solomon, E.I.10
Cramer, C.J.11
Tolman, W.B.12
-
72
-
-
27844441878
-
-
(b) Lanci, M. P.; Brinkley, D. W.; Stone, K. L.; Smirnov, V. V.; Roth, J. P. Angew. Chem., Int. Ed. 2005, 44, 7273-7276.
-
(2005)
Angew. Chem., Int. Ed
, vol.44
, pp. 7273-7276
-
-
Lanci, M.P.1
Brinkley, D.W.2
Stone, K.L.3
Smirnov, V.V.4
Roth, J.P.5
-
73
-
-
33646095487
-
-
(c) Smirnov, V. V.; Brinkley, D. W.; Lanci, M. P.; Karlin, K. D.; Roth, J. P. J. Mol. Catal. A: Chem. 2006, 251, 100-107.
-
(2006)
J. Mol. Catal. A: Chem
, vol.251
, pp. 100-107
-
-
Smirnov, V.V.1
Brinkley, D.W.2
Lanci, M.P.3
Karlin, K.D.4
Roth, J.P.5
-
74
-
-
37049243182
-
-
(a) Vaska, L. Science 1963, 140, 809-810.
-
(1963)
Science
, vol.140
, pp. 809-810
-
-
Vaska, L.1
-
75
-
-
0038666776
-
-
(b) Vaska, L.; Chen, L. S.; Senoff, C. V. Science 1971, 174, 587-589.
-
(1971)
Science
, vol.174
, pp. 587-589
-
-
Vaska, L.1
Chen, L.S.2
Senoff, C.V.3
-
76
-
-
34247156201
-
-
This activation barrier is derived from the experimental rate constant (2.21 × 10-4 s-1) for the oxygenation of 12 in benzene at 51°C see ref 10
-
-1) for the oxygenation of 12 in benzene at 51°C (see ref 10).
-
-
-
-
77
-
-
34247153931
-
-
This structure rationalizes the experimental observation that addition of benzoic acid to a solution of the palladium-hydride complex 12 in benzene or toluene causes the resonances of the coordinated benzoate ligand to broaden in the 1H NMR spectrum. The extent of broadening increases with increased concentrations of added benzoic acid
-
1H NMR spectrum. The extent of broadening increases with increased concentrations of added benzoic acid.
-
-
-
-
78
-
-
34247141941
-
-
We restrict our analysis in this section to a comparison of electronic total energies (ΔEo and ΔE ‡) rather than free energies (ΔGo and ΔG‡) because identification of a true transition state for the HX reductive elimination pathway has thus far been elusive and prevents us from calculating a free energy of activation (ΔG ‡) for this mechanism
-
‡) for this mechanism.
-
-
-
-
79
-
-
34247177514
-
-
-1). Attempts to optimize a true transition state (i.e., a structure with a single imaginary frequency) have been complicated by the fact that the potential energy surface in the region of the saddle point appears to be quite flat.
-
-1). Attempts to optimize a true transition state (i.e., a structure with a single imaginary frequency) have been complicated by the fact that the potential energy surface in the region of the saddle point appears to be quite flat.
-
-
-
-
80
-
-
34247177965
-
-
We note that water (the stoichiometric byproduct of O2 reduction) and other hydrogen-bond donating molecules present under catalytic reaction conditions (substrates, products, and additives) could mimic the effect of acetic acid
-
2 reduction) and other hydrogen-bond donating molecules present under catalytic reaction conditions (substrates, products, and additives) could mimic the effect of acetic acid.
-
-
-
|