메뉴 건너뛰기




Volumn 22, Issue 2, 2007, Pages 904-910

Recurrent neurofuzzy network in thermal modeling of power transformers

Author keywords

Power transformers; Recurrent neurofuzzy networks (RNFNs); Thermal modeling

Indexed keywords

COMPUTER SIMULATION; FUZZY NEURAL NETWORKS; MULTILAYER NEURAL NETWORKS; RADIAL BASIS FUNCTION NETWORKS; RECURRENT NEURAL NETWORKS; TEMPERATURE DISTRIBUTION;

EID: 34147147590     PISSN: 08858977     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPWRD.2006.874613     Document Type: Article
Times cited : (28)

References (14)
  • 1
    • 0035481233 scopus 로고    scopus 로고
    • Adaptative transformer thermal overload protection
    • Oct
    • G. W. Swift et al., "Adaptative transformer thermal overload protection," IEEE Trans. Power Del., vol. 16, no. 4, pp. 516-521, Oct. 2001.
    • (2001) IEEE Trans. Power Del , vol.16 , Issue.4 , pp. 516-521
    • Swift, G.W.1
  • 4
    • 0030150677 scopus 로고    scopus 로고
    • A neural diagnostic system for the monitoring of transformer heating
    • May
    • P. Daponte, D. Grimaldi, A. Piccolo, and D. Villacci, "A neural diagnostic system for the monitoring of transformer heating," Measurement, vol. 18, no. 1, pp. 35-46, May 1996.
    • (1996) Measurement , vol.18 , Issue.1 , pp. 35-46
    • Daponte, P.1    Grimaldi, D.2    Piccolo, A.3    Villacci, D.4
  • 5
    • 0033725510 scopus 로고    scopus 로고
    • Recurrent and non-recurrent dynamic network paradigms: A case study
    • Como, Italy, Jul
    • W. Maydl and B. Sick, "Recurrent and non-recurrent dynamic network paradigms: A case study," in Proc. IEEE/INNS/ENNS Int. Joint Conf. Neural Networks, Como, Italy, Jul. 2000, vol. 6, pp. 73-78.
    • (2000) Proc. IEEE/INNS/ENNS Int. Joint Conf. Neural Networks , vol.6 , pp. 73-78
    • Maydl, W.1    Sick, B.2
  • 7
    • 12344332535 scopus 로고    scopus 로고
    • The role of learning methods in the dynamic assessment of power components loading capability
    • Feb
    • D. Villaci, G. Bontempi, A. Vaccaro, and M. Birattari, "The role of learning methods in the dynamic assessment of power components loading capability," IEEE Trans. Ind. Eletron., vol. 52, no. 1, pp. 280-290, Feb. 2005.
    • (2005) IEEE Trans. Ind. Eletron , vol.52 , Issue.1 , pp. 280-290
    • Villaci, D.1    Bontempi, G.2    Vaccaro, A.3    Birattari, M.4
  • 8
    • 0012045480 scopus 로고
    • Fuzzy neural networks: A survey
    • Aug
    • A. Buckley and Y. Hayashi, "Fuzzy neural networks: A survey," Fuzzy Sets Syst., vol. 66, no. 1, pp. 1-13, Aug. 1994.
    • (1994) Fuzzy Sets Syst , vol.66 , Issue.1 , pp. 1-13
    • Buckley, A.1    Hayashi, Y.2
  • 10
    • 0036457989 scopus 로고    scopus 로고
    • Learning in recurrent, hybrid neurofuzzy networks
    • May
    • R. Ballini and F. Gomide, "Learning in recurrent, hybrid neurofuzzy networks," in Proc. IEEE Int. Conf. Fuzzy Syst., May 2002, vol. 1, pp. 785-791.
    • (2002) Proc. IEEE Int. Conf. Fuzzy Syst , vol.1 , pp. 785-791
    • Ballini, R.1    Gomide, F.2
  • 11
    • 0033098832 scopus 로고    scopus 로고
    • Recurrent neuro-fuzzy networks for nonlinear process modeling
    • Feb
    • J. Zhang and A. J. Morris, "Recurrent neuro-fuzzy networks for nonlinear process modeling," IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 313-326, Feb. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.2 , pp. 313-326
    • Zhang, J.1    Morris, A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.