-
1
-
-
0010717571
-
-
Huffman, K. R.; Loy, M.; Ullman, E. F. J. Am. Chem. Soc. 1965, 87, 5417.
-
(1965)
J. Am. Chem. Soc
, vol.87
, pp. 5417
-
-
Huffman, K.R.1
Loy, M.2
Ullman, E.F.3
-
7
-
-
0001182558
-
-
(a) Netto-Ferreira, J. C.; Wintgens, V.; Scaiano, J. C. Can. J. Chem. 1994, 72, 1565.
-
(1994)
Can. J. Chem
, vol.72
, pp. 1565
-
-
Netto-Ferreira, J.C.1
Wintgens, V.2
Scaiano, J.C.3
-
8
-
-
34047196418
-
-
(b) Ohzeki, T.; Ohgusa, H.; Isaka, H.; Suzuki, S.; Takahashi, H. Chem. Phys. Lett. 1988, 149, 379.
-
(1988)
Chem. Phys. Lett
, vol.149
, pp. 379
-
-
Ohzeki, T.1
Ohgusa, H.2
Isaka, H.3
Suzuki, S.4
Takahashi, H.5
-
9
-
-
0004780689
-
-
Nakayama, T.; Torii, Y.; Nagahara, T.; Hamanoue, K. J. Photochem. Photobiol. A 1998, 119, 1.
-
(1998)
J. Photochem. Photobiol. A
, vol.119
, pp. 1
-
-
Nakayama, T.1
Torii, Y.2
Nagahara, T.3
Hamanoue, K.4
-
10
-
-
33947088997
-
-
Wagner, P. J.; Kelso, P. A.; Zepp, R. G. J. Am. Chem. Soc. 1972, 94, 7480.
-
(1972)
J. Am. Chem. Soc
, vol.94
, pp. 7480
-
-
Wagner, P.J.1
Kelso, P.A.2
Zepp, R.G.3
-
11
-
-
0032542693
-
-
Wagner, P. J.; Sobczak, M.; Park, B. S. J. Am. Chem. Soc. 1998, 120, 2488.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 2488
-
-
Wagner, P.J.1
Sobczak, M.2
Park, B.S.3
-
12
-
-
0037414503
-
-
(a) Mal, P.; Lourderaj, U.; Venugopalan, P.; Moorthy, J. N.; Sathyamurthy, N. J. Org. Chem. 2003, 68, 3446.
-
(2003)
J. Org. Chem
, vol.68
, pp. 3446
-
-
Mal, P.1
Lourderaj, U.2
Venugopalan, P.3
Moorthy, J.N.4
Sathyamurthy, N.5
-
13
-
-
24144454617
-
-
(b) Koner, A. L.; Singhal, N.; Nau, W. M.; Moorthy, J. N. J. Org. Chem. 2005, 70, 7439.
-
(2005)
J. Org. Chem
, vol.70
, pp. 7439
-
-
Koner, A.L.1
Singhal, N.2
Nau, W.M.3
Moorthy, J.N.4
-
14
-
-
0003758825
-
-
Elsevier Science B. V, Amsterdam, The Netherlands
-
Bouas-Laurent, H.; Dürr, H. Photochromism; Elsevier Science B. V.: Amsterdam, The Netherlands, 2003.
-
(2003)
Photochromism
-
-
Bouas-Laurent, H.1
Dürr, H.2
-
15
-
-
34047196690
-
-
Valès, M. Ph.D. thesis, Université de Luminy, Marseille, 2001.
-
(a) Valès, M. Ph.D. thesis, Université de Luminy, Marseille, 2001.
-
-
-
-
16
-
-
0037078253
-
-
(b) Valès, M.; Lokshin, V.; Pepe, G.; Guglielmetti, R.; Samat, A. Tetrahedron 2002, 58, 8543.
-
(2002)
Tetrahedron
, vol.58
, pp. 8543
-
-
Valès, M.1
Lokshin, V.2
Pepe, G.3
Guglielmetti, R.4
Samat, A.5
-
17
-
-
0041565165
-
-
Lokshin, V.; Valès, M.; Samat, A.; Pèpe, G.; Metelista, A.; Khodorkovsky, V. Chem. Commun. 2003, 2080.
-
(2003)
Chem. Commun
, pp. 2080
-
-
Lokshin, V.1
Valès, M.2
Samat, A.3
Pèpe, G.4
Metelista, A.5
Khodorkovsky, V.6
-
20
-
-
34047232579
-
-
Note that the reduction of the initial intensity in both the 640 and the 490 nm kinetics as the quencher concentration is raised, satisfactorily reproduced by the fits in Figure 8, is not due to a lowering of the initial TB concentration but results from an effect of the convolution of the constant apparatus response with the increasingly rapid exponential decay kinetics of TB (as the timescale of these kinetics are similar to the apparatus response time, its short-time region appears truncated).
-
Note that the reduction of the initial intensity in both the 640 and the 490 nm kinetics as the quencher concentration is raised, satisfactorily reproduced by the fits in Figure 8, is not due to a lowering of the initial TB concentration but results from an effect of the convolution of the constant apparatus response with the increasingly rapid exponential decay kinetics of TB (as the timescale of these kinetics are similar to the apparatus response time, its short-time region appears truncated).
-
-
-
-
21
-
-
0018784176
-
-
(a) Das, P. K.; Encinas, M. V.; Small, R. D., Jr.; Scaiano, J. C. J. Am. Chem. Soc. 1979, 101, 6965.
-
(1979)
J. Am. Chem. Soc
, vol.101
, pp. 6965
-
-
Das, P.K.1
Encinas, M.V.2
Small Jr., R.D.3
Scaiano, J.C.4
-
22
-
-
33748278290
-
-
(b) Baral-Tosh, S.; Chattopadhyay, S. K.; Das, P. K. J. Phys. Chem. 1984, 88, 1404.
-
(1984)
J. Phys. Chem
, vol.88
, pp. 1404
-
-
Baral-Tosh, S.1
Chattopadhyay, S.K.2
Das, P.K.3
-
23
-
-
0001637399
-
-
(a) Haag, R.; Wirz, J.; Wagner, P. J. Helv. Chim. Acta 1977, 60, 2595.
-
(1977)
J. Helv. Chim. Acta
, vol.60
, pp. 2595
-
-
Haag, R.1
Wirz, J.2
Wagner, P.3
-
24
-
-
37049125079
-
-
(b) Lutz, H.; Bréhéret, E.; Lindqvist, L. J. Chem. Soc. Faraday Trans. 1 1973, 69, 2096.
-
(1973)
J. Chem. Soc. Faraday Trans. 1
, vol.69
, pp. 2096
-
-
Lutz, H.1
Bréhéret, E.2
Lindqvist, L.3
-
25
-
-
0041573625
-
-
Kamlet, M. J.; Abboud, J. L.; Abraham, M. H.; Taft, R. W. J. Org. Chem. 1983, 48, 2877.
-
(1983)
J. Org. Chem
, vol.48
, pp. 2877
-
-
Kamlet, M.J.1
Abboud, J.L.2
Abraham, M.H.3
Taft, R.W.4
-
26
-
-
23744515748
-
-
Berthet, J.; Lokshin, V.; Valès, M.; Samat, A.; Vermeersch, G.; Delbaere, S. Tetrahedron Lett. 2005, 46, 6319.
-
(2005)
Tetrahedron Lett
, vol.46
, pp. 6319
-
-
Berthet, J.1
Lokshin, V.2
Valès, M.3
Samat, A.4
Vermeersch, G.5
Delbaere, S.6
-
29
-
-
33845183923
-
-
If the triplet of the photoenol and the 1,4-biradical are one and the same species, the dominant character between radical-like or excited triplet state behavior (see ref 5) has to be determined although this information can only be precisely deduced from time-resolved ESR experiments, a) Ikoma, T, Akiyama, K, Tero-Kubota, S, Ikegami, Y. J. Phys. Chem. 1989, 93, 7087
-
If the triplet of the photoenol and the 1,4-biradical are one and the same species, the dominant character between radical-like or excited triplet state behavior (see ref 5) has to be determined although this information can only be precisely deduced from time-resolved ESR experiments, (a) Ikoma, T.; Akiyama, K.; Tero-Kubota, S.; Ikegami, Y. J. Phys. Chem. 1989, 93, 7087.
-
-
-
-
30
-
-
33845282883
-
-
(b) Akiyama, K.; Ikegami, Y.; Tero-Kubota, S. J. Am. Chem. Soc. 1987, 109, 2538.
-
(1987)
J. Am. Chem. Soc
, vol.109
, pp. 2538
-
-
Akiyama, K.1
Ikegami, Y.2
Tero-Kubota, S.3
-
31
-
-
0000113135
-
-
Quenching of type II biradical with β-carotene by triplet energy transfer is an example of excited state triplet behavior characterization. Kumar, C. V, Chattopadhyay, S. K, Das, P. K. J. Am. Chem. Soc. 1983, 105, 5143
-
Quenching of type II biradical with β-carotene by triplet energy transfer is an example of excited state triplet behavior characterization. Kumar, C. V.; Chattopadhyay, S. K.; Das, P. K. J. Am. Chem. Soc. 1983, 105, 5143.
-
-
-
-
32
-
-
0034598544
-
-
De Feyter, S.; Diau, E. W.-G.; Zewail, A. H. Angew. Chem. Int. Ed. 2000, 39, 260.
-
(2000)
Angew. Chem. Int. Ed
, vol.39
, pp. 260
-
-
De Feyter, S.1
Diau, E.W.-G.2
Zewail, A.H.3
-
33
-
-
3343021098
-
-
(a) Shah, B. K.; Rodgers, M. A. J.; Neckers, D. C. J. Phys. Chem. A 2004, 108, 6087.
-
(2004)
J. Phys. Chem. A
, vol.108
, pp. 6087
-
-
Shah, B.K.1
Rodgers, M.A.J.2
Neckers, D.C.3
-
34
-
-
0001037715
-
-
(b) McGarry, P. F.; Doubleday, C. E., Jr.; Wu, C.-H.; Staab, H. A.; Turro, N. J. J. Photochem. Photobiol. A 1994, 77, 109.
-
(1994)
J. Photochem. Photobiol. A
, vol.77
, pp. 109
-
-
McGarry, P.F.1
Doubleday Jr., C.E.2
Wu, C.-H.3
Staab, H.A.4
Turro, N.J.5
-
35
-
-
34047207972
-
-
2(π,π*) state during Norrish type I and II reactions has been recently demonstrated by CASSCF calculation. He, H.-Y.; Fang, W.-H.; Philips, D. L. J. Phys. Chem. A 2004, 108, 5386.
-
2(π,π*) state during Norrish type I and II reactions has been recently demonstrated by CASSCF calculation. He, H.-Y.; Fang, W.-H.; Philips, D. L. J. Phys. Chem. A 2004, 108, 5386.
-
-
-
-
36
-
-
34047198292
-
-
Wagner, P. J.; Gin, B. P.; Scaiano, J. C.; Ward, D. L.; Gabe, E.; Lee, F. E. J. Am. Chem. Soc. 1985, 107, 5490.
-
(1985)
J. Am. Chem. Soc
, vol.107
, pp. 5490
-
-
Wagner, P.J.1
Gin, B.P.2
Scaiano, J.C.3
Ward, D.L.4
Gabe, E.5
Lee, F.E.6
-
38
-
-
0000544118
-
-
(b) Al-Soufi, W.; Eychmüller, A.; Grellmann, K. H. J. Phys. Chem. 1991, 95, 2022.
-
(1991)
J. Phys. Chem
, vol.95
, pp. 2022
-
-
Al-Soufi, W.1
Eychmüller, A.2
Grellmann, K.H.3
-
40
-
-
84981911761
-
-
(a) Salem, L.; Rowland, C. Angew. Chem., Int. Ed. Engl. 1972, 11, 92.
-
(1972)
Angew. Chem., Int. Ed. Engl
, vol.11
, pp. 92
-
-
Salem, L.1
Rowland, C.2
-
41
-
-
0021487061
-
-
Caldwell, R. A. Pure Appl. Chem. 1984, 56, 1167. The conjugation effect occurring during the biradical decay can be explained in the following terms: Increased delocalization should increase the average distance between the unpaired electrons of the biradical, thus lowering their spin-orbit coupling and consequently decreasing the yield of the ISC process responsible for the decay.
-
(b) Caldwell, R. A. Pure Appl. Chem. 1984, 56, 1167. The conjugation effect occurring during the biradical decay can be explained in the following terms: Increased delocalization should increase the average distance between the unpaired electrons of the biradical, thus lowering their spin-orbit coupling and consequently decreasing the yield of the ISC process responsible for the decay.
-
-
-
-
42
-
-
0001681849
-
-
Caldwell, R. A.; Majima, T.; Pac, C. J. Am. Chem. Soc. 1982, 104, 629.
-
(1982)
J. Am. Chem. Soc
, vol.104
, pp. 629
-
-
Caldwell, R.A.1
Majima, T.2
Pac, C.3
|