메뉴 건너뛰기




Volumn 1, Issue , 2006, Pages 5228-5232

Application of partial least squares support vector machines (PLS-SVM) in spectroscopy quantitative analysis

Author keywords

Feature extraction; Near infrared spectroscopy (NIRS); Partial least squares (PLS); Quantitative analysis; Support vector machines (SVM)

Indexed keywords

FEATURE EXTRACTION; LEAST SQUARES APPROXIMATIONS; NEAR INFRARED SPECTROSCOPY; SPECTROSCOPIC ANALYSIS;

EID: 34047208978     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WCICA.2006.1713389     Document Type: Conference Paper
Times cited : (10)

References (7)
  • 1
    • 34047193147 scopus 로고    scopus 로고
    • Chinese source
    • Chinese source
  • 3
    • 34047219592 scopus 로고    scopus 로고
    • Chinese source
    • Chinese source
  • 4
    • 34047219591 scopus 로고    scopus 로고
    • Chinese source
    • Chinese source
  • 5
    • 34047220543 scopus 로고    scopus 로고
    • Chinese source
    • Chinese source
  • 6
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • Suykens, J. A. K., J. De Brabanter, L. Lukas, J. Vandewalle (2002). Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 48(1): 85-105.
    • (2002) Neurocomputing , vol.48 , Issue.1 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 7
    • 34047195064 scopus 로고    scopus 로고
    • Chinese source
    • Chinese source


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.