-
1
-
-
34047231307
-
-
Z. Miohalewicz, Genetic algorithms + Data Structures = Evolution Programs, Spring Verlag Berlin Heidelberg, 1996, Chinese Version, 2002
-
Z. Miohalewicz, Genetic algorithms + Data Structures = Evolution Programs, Spring Verlag Berlin Heidelberg, 1996, Chinese Version, 2002
-
-
-
-
2
-
-
0037016631
-
Theoretical and numerical constraint-handling techniques used with evolutionary algorithinsia survey of the state of the art
-
CAC Coello, "Theoretical and numerical constraint-handling techniques used with evolutionary algorithinsia survey of the state of the art", Comput. Methods Appl. Mech. Eng.,vol. 191, pp 1245-1287, 2002
-
(2002)
Comput. Methods Appl. Mech. Eng
, vol.191
, pp. 1245-1287
-
-
Coello, C.A.C.1
-
3
-
-
0028602950
-
On the use of nonstationary penalty functions to solve nonlinear constrained optimization problems with GAs
-
J. Joines and C. Houck, "On the use of nonstationary penalty functions to solve nonlinear constrained optimization problems with GAs," Proc. IEEE Int. Conf. Evolutionary Computing Piscataway, NJ: IEEE, pp. 579-584, 1994.
-
(1994)
Proc. IEEE Int. Conf. Evolutionary Computing Piscataway, NJ: IEEE
, pp. 579-584
-
-
Joines, J.1
Houck, C.2
-
4
-
-
0002275849
-
A Segregated Genetic Algorithm for Constrained structural Optimization
-
USA
-
R. Le Riche, C. Knopf-Lenoir, and R.T. Haftka, "A Segregated Genetic Algorithm for Constrained structural Optimization," Proceedings of the 6th International Conference on GA, San Francisco, USA (1995) pp. 558-565, 1995.
-
(1995)
Proceedings of the 6th International Conference on GA, San Francisco
, pp. 558-565
-
-
Le Riche, R.1
Knopf-Lenoir, C.2
Haftka, R.T.3
-
5
-
-
0033729054
-
An efficient constraint handling method for genetic algorithm
-
K. Deb, "An efficient constraint handling method for genetic algorithm," Computer Methods and in Applied Mechanics and Engineering, vol. 186, pp.311-338, 2000
-
(2000)
Computer Methods and in Applied Mechanics and Engineering
, vol.186
, pp. 311-338
-
-
Deb, K.1
-
6
-
-
78650079117
-
A two-step selection scheme for constrained evolutionary optimization
-
Nanjing, China, pp, Dec
-
C. Ming, O. Kamhiro, U. Kanji, and S. Masahara, "A two-step selection scheme for constrained evolutionary optimization," IEEE, Int. Conf. Neural Networks. &. Signal Processing, Nanjing, China, pp. 14-17, Dec. 2003.
-
(2003)
IEEE, Int. Conf. Neural Networks. &. Signal Processing
, pp. 14-17
-
-
Ming, C.1
Kamhiro, O.2
Kanji, U.3
Masahara, S.4
-
7
-
-
0036993440
-
A new genetic algorithm to handle the constrained optimization problem
-
Las Vegas, pp
-
S.J. Mu, H.Y. Su, W.J. Mao, et al. "A new genetic algorithm to handle the constrained optimization problem," In 41st IEEE Conference on Decision and Control, Las Vegas, pp.739-740, 2002.
-
(2002)
41st IEEE Conference on Decision and Control
, pp. 739-740
-
-
Mu, S.J.1
Su, H.Y.2
Mao, W.J.3
-
8
-
-
84958949122
-
A multi-objective approach to constrained optimization of gas supply networks: The COMOGA method
-
P. Surry, N. Radcliffe, and I. Boyd, "A multi-objective approach to constrained optimization of gas supply networks: The COMOGA method," in Proc. Evol. Comput, AISB Workshop, pp. 166-180, 1995.
-
(1995)
Proc. Evol. Comput, AISB Workshop
, pp. 166-180
-
-
Surry, P.1
Radcliffe, N.2
Boyd, I.3
-
9
-
-
25444524580
-
Evolutionary algorithms for constrained parameter optimization problems
-
Z. Michalewicz and M. Schoenauer, "Evolutionary algorithms for constrained parameter optimization problems," Evol. Comput., vol. 4, pp. 1-32, 1996.
-
(1996)
Evol. Comput
, vol.4
, pp. 1-32
-
-
Michalewicz, Z.1
Schoenauer, M.2
-
12
-
-
0028602950
-
On the use of non-stationary penalty functions to solve constrained optimization problems with genetic algorithms
-
Orlando, Fl, pp
-
J. Joines, and C. Houck, "On the use of non-stationary penalty functions to solve constrained optimization problems with genetic algorithms," IEEE International Symposium Evolutionary Computation, Orlando, Fl, pp579-584, 1994
-
(1994)
IEEE International Symposium Evolutionary Computation
, pp. 579-584
-
-
Joines, J.1
Houck, C.2
|