메뉴 건너뛰기




Volumn , Issue , 2006, Pages 5519-5522

Predictive modeling of therapy response in multiple sclerosis using gene expression data

Author keywords

[No Author keywords available]

Indexed keywords

PHENOTYPIC OUTCOMES; PREDICTIVE MODELING; THERAPY RESPONSES; TRANSCRIPTIONAL PROFILING;

EID: 34047185294     PISSN: 05891019     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IEMBS.2006.259681     Document Type: Conference Paper
Times cited : (6)

References (15)
  • 1
    • 34047159402 scopus 로고    scopus 로고
    • National Multiple Sclerosis Society
    • National Multiple Sclerosis Society. http://www.nmss.org.
  • 2
    • 0036789860 scopus 로고    scopus 로고
    • Assessment of different treatment failure criteria in a cohort of relapsing-remitting multiple sclerosis patients treated with Interferon beta: Implications for clinical trials
    • Rio J, et al. (2002) Assessment of different treatment failure criteria in a cohort of relapsing-remitting multiple sclerosis patients treated with Interferon beta: Implications for clinical trials. Ann Neurol 52: 400-406.
    • (2002) Ann Neurol , vol.52 , pp. 400-406
    • Rio, J.1
  • 3
    • 20044373640 scopus 로고    scopus 로고
    • Transcription-based prediction of response to IFNbeta using supervised computational methods
    • Jan 3
    • Baranzini SE, et al.(2005) Transcription-based prediction of response to IFNbeta using supervised computational methods. PLoS Biol. Jan 3, 1:e2.
    • (2005) PLoS Biol , vol.1
    • Baranzini, S.E.1
  • 5
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li, T., et al. (2004) A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 20, 2429-2437.
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1
  • 6
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum, A., and Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 245-271.
    • (1997) Artificial Intelligence , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 7
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of Discriminant Methods for the Classification of Tumors Using Gene Expression Data
    • Marv
    • Dudoit, S, Fridlyand, J, and Speed, T. (2002) Comparison of Discriminant Methods for the Classification of Tumors Using Gene Expression Data. Journal of the American Statistical Association: Mar(v.97, No. 457):77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 8
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis functions networks
    • Chen, S. Cowan, CFN. And Grant, PM. (1991). Orthogonal least squares learning algorithm for radial basis functions networks. IEEE Transactions on Neural Networks, 2(2), 302-309.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    And Grant, P.M.3
  • 9
    • 0023893212 scopus 로고
    • Identifying nonlinear difference equation and functional expansion representations: The fast orthogonal algorithm
    • Korenberg, MJ. (1988). Identifying nonlinear difference equation and functional expansion representations: the fast orthogonal algorithm. Ann Biomed, Eng. (16) 123-142.
    • (1988) Ann Biomed, Eng , vol.16 , pp. 123-142
    • Korenberg, M.J.1
  • 10
    • 0346888587 scopus 로고    scopus 로고
    • On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles
    • Kendziorski, M, et al. (2003) On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine 22: 3899-3914.
    • (2003) Statistics in Medicine , vol.22 , pp. 3899-3914
    • Kendziorski, M.1
  • 12
    • 34047118603 scopus 로고    scopus 로고
    • Hastie, T, Tibshirani, R, and Friedman, J. (2001).The Elements of Statistical Learning: Data Mining, Inference, and Prediction Springer: New York.
    • Hastie, T, Tibshirani, R, and Friedman, J. (2001).The Elements of Statistical Learning: Data Mining, Inference, and Prediction Springer: New York.
  • 13
    • 0037790592 scopus 로고    scopus 로고
    • Apoptosis and interferons: Role of interferon-stimulated genes as mediators of apoptosis
    • Chawla-Sarkar M, et al. (2003) Apoptosis and interferons: Role of interferon-stimulated genes as mediators of apoptosis. Apoptosis 8: 237-249.
    • (2003) Apoptosis , vol.8 , pp. 237-249
    • Chawla-Sarkar, M.1
  • 14
    • 0037377237 scopus 로고    scopus 로고
    • Systemic IFN-beta treatment induces apoptosis of peripheral immune cells in MS patients
    • Gniadek P, et al. (2003) Systemic IFN-beta treatment induces apoptosis of peripheral immune cells in MS patients. J Neuroimmunol 137: 187-196.
    • (2003) J Neuroimmunol , vol.137 , pp. 187-196
    • Gniadek, P.1
  • 15
    • 28044465612 scopus 로고    scopus 로고
    • Xia, JX. et al. (2005). B7 molecules mRNA expression in colorectal carcinoma. World J Gastroenterol.Sep 28;11(36):5655-8.
    • Xia, JX. et al. (2005). B7 molecules mRNA expression in colorectal carcinoma. World J Gastroenterol.Sep 28;11(36):5655-8.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.