-
2
-
-
0034629763
-
-
A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, ibid. 84, 3314 (2000);
-
(2000)
Phys. Rev. Lett
, vol.84
, pp. 3314
-
-
Stroock, A.D.1
Weck, M.2
Chiu, D.T.3
Huck, W.T.S.4
Kenis, P.J.A.5
Ismagilov, R.F.6
Whitesides, G.M.7
-
3
-
-
28844455576
-
-
Y.-J. Juang, X. Hu, S. Wang, L. J. Lee, C. Lu, and J. Guan, Appl. Phys. Lett. 87, 244105 (2005).
-
(2005)
Appl. Phys. Lett
, vol.87
, pp. 244105
-
-
Juang, Y.-J.1
Hu, X.2
Wang, S.3
Lee, L.J.4
Lu, C.5
Guan, J.6
-
4
-
-
33747865686
-
-
X. Hu, S. Wang, Y.-J. Juang, and L. J. Lee, Appl. Phys. Lett. 89, 084101 (2006).
-
(2006)
Appl. Phys. Lett
, vol.89
, pp. 084101
-
-
Hu, X.1
Wang, S.2
Juang, Y.-J.3
Lee, L.J.4
-
5
-
-
0001648447
-
-
A. Gonzalez, A. Ramos, N. G. Green, A. Castellanos, and H. Morgan, Phys. Rev. E 61, 4019 (2000).
-
(2000)
Phys. Rev. E
, vol.61
, pp. 4019
-
-
Gonzalez, A.1
Ramos, A.2
Green, N.G.3
Castellanos, A.4
Morgan, H.5
-
6
-
-
34047148855
-
-
b∼L/ σ with the conductivity σ.
-
b∼L/ σ with the conductivity σ.
-
-
-
-
7
-
-
4043155740
-
-
D. Lastochkin, R. Zhou, P. Wang, Y. Ben, and H.-C. Chang, J. Appl. Phys. 96, 1730 (2004).
-
(2004)
J. Appl. Phys
, vol.96
, pp. 1730
-
-
Lastochkin, D.1
Zhou, R.2
Wang, P.3
Ben, Y.4
Chang, H.-C.5
-
8
-
-
0029309503
-
-
A. Mizuno, M. Nishioka, Y. Ohno, and L.-D. Dascalescu, IEEE Trans. Ind. Appl. 31, 464 (1995).
-
(1995)
IEEE Trans. Ind. Appl
, vol.31
, pp. 464
-
-
Mizuno, A.1
Nishioka, M.2
Ohno, Y.3
Dascalescu, L.-D.4
-
9
-
-
34047095340
-
-
Having the electrode system housed in a slide-thick polydimethylsiloxane microchannel of length of 5.5 cm, width of 0.2 cm, and depth of 120 μm, we turn the entire device upside down on the platform for observing the flow using an inverted microscope without being interfered by the electrodes
-
Having the electrode system housed in a slide-thick polydimethylsiloxane microchannel (of length of 5.5 cm, width of 0.2 cm, and depth of 120 μm), we turn the entire device upside down on the platform for observing the flow using an inverted microscope without being interfered by the electrodes.
-
-
-
-
10
-
-
34047180561
-
-
We also observe the flow pattern near the bottom surface and find that the extensional flow structure is virtually identical to that (at 50 μm) above the surface. In addition, the measured extension rate is 3 s-1 under 20 Vp.p. at 100 Hz, which is close to 4 s-1 above the surface under the same condition. All the evidence above suggests that the rectified extensional flow is indeed nearly two-dimensional despite its three-dimensional origin
-
-1 above the surface under the same condition. All the evidence above suggests that the rectified extensional flow is indeed nearly two-dimensional despite its three-dimensional origin.
-
-
-
-
11
-
-
1842368477
-
-
T. T. Perkins, D. E. Smith, and S. Chu, Science 276, 2016 (1997); D. E. Smith and S. Chu, ibid. 281, 1335 (1998).
-
T. T. Perkins, D. E. Smith, and S. Chu, Science 276, 2016 (1997); D. E. Smith and S. Chu, ibid. 281, 1335 (1998).
-
-
-
-
12
-
-
18644365991
-
-
A. B. D. Brown, C. G. Smith, and A. R. Rennie, Phys. Rev. E 63, 016305 (2000); A. Ramos, A. Gonzalez, A. Castellanos, N. G. Green, and H. Morgan, ibid. 67, 056302 (2003).
-
A. B. D. Brown, C. G. Smith, and A. R. Rennie, Phys. Rev. E 63, 016305 (2000); A. Ramos, A. Gonzalez, A. Castellanos, N. G. Green, and H. Morgan, ibid. 67, 056302 (2003).
-
-
-
|