-
1
-
-
0002665358
-
Pseudo-Valuation Rings
-
New York/Basel: Dekker, pp
-
Anderson, D. F., Badawi, A., Dobbs, D. E. (1997). Pseudo-Valuation Rings. Lecture Notes Pure Appl. Math. 185. New York/Basel: Dekker, pp. 57-67.
-
(1997)
Lecture Notes Pure Appl. Math
, vol.185
, pp. 57-67
-
-
Anderson, D.F.1
Badawi, A.2
Dobbs, D.E.3
-
2
-
-
0039446235
-
The primitive element theorem for commutative algebras
-
Anderson, D. D., Dobbs, D. E., Mullins, B. (1999). The primitive element theorem for commutative algebras. Houston J. Math. 25:603-623.
-
(1999)
Houston J. Math
, vol.25
, pp. 603-623
-
-
Anderson, D.D.1
Dobbs, D.E.2
Mullins, B.3
-
3
-
-
0001360309
-
Pseudo-valuation rings, II
-
Anderson, D. F., Badawi, A., Dobbs, D. E. (2000). Pseudo-valuation rings, II. Boll. U. M. I. 8(3-B):535-545.
-
(2000)
Boll. U. M. I
, vol.8
, Issue.3 -B
, pp. 535-545
-
-
Anderson, D.F.1
Badawi, A.2
Dobbs, D.E.3
-
5
-
-
0004265613
-
-
Ph. D. dissertation, University of California, California, USA, Riverside
-
Dechéne, L. I. (1978). Adjacent Extensions of Rings. Ph. D. dissertation, University of California, California, USA, Riverside.
-
(1978)
Adjacent Extensions of Rings
-
-
Dechéne, L.I.1
-
6
-
-
0007235974
-
Going-down rings with zero-divisors
-
Dobbs, D. E. (1997). Going-down rings with zero-divisors. Houston J. Math. 23:1-12.
-
(1997)
Houston J. Math
, vol.23
, pp. 1-12
-
-
Dobbs, D.E.1
-
7
-
-
33845866333
-
Every commutative ring has a minimal ring extension
-
Dobbs, D. E. (2006). Every commutative ring has a minimal ring extension. Comm. Algebra 34(10):3875-3881.
-
(2006)
Comm. Algebra
, vol.34
, Issue.10
, pp. 3875-3881
-
-
Dobbs, D.E.1
-
8
-
-
33748685413
-
A classification of the minimal ring extensions of an integral domain
-
Dobbs, D. E., Shapiro, J. (2006). A classification of the minimal ring extensions of an integral domain. J. Algebra 305:185-193.
-
(2006)
J. Algebra
, vol.305
, pp. 185-193
-
-
Dobbs, D.E.1
Shapiro, J.2
-
9
-
-
0013485045
-
Homomorphismes minimaux d'anneaux
-
Ferrand, D., Olivier, J.-P. (1970). Homomorphismes minimaux d'anneaux. J. Algebra 16:461-471.
-
(1970)
J. Algebra
, vol.16
, pp. 461-471
-
-
Ferrand, D.1
Olivier, J.-P.2
-
10
-
-
0001283281
-
Topologically defined classes of commutative rings
-
Fontana, M. (1980). Topologically defined classes of commutative rings. Ann. Mat. Pura Appl. 123:331-355.
-
(1980)
Ann. Mat. Pura Appl
, vol.123
, pp. 331-355
-
-
Fontana, M.1
-
14
-
-
0004252750
-
-
Rev. Ed. Chicago: University of Chicago Press
-
Kaplansky, I. (1974). Commutative Rings. Rev. Ed. Chicago: University of Chicago Press.
-
(1974)
Commutative Rings
-
-
Kaplansky, I.1
-
15
-
-
0242566150
-
Remarks on Sato-Sugatani-Yochida's results concerning minimal overrings
-
Matsuda, R. (1992). Remarks on Sato-Sugatani-Yochida's results concerning minimal overrings. Math. J. Toyama Univ. 15:39-42.
-
(1992)
Math. J. Toyama Univ
, vol.15
, pp. 39-42
-
-
Matsuda, R.1
-
16
-
-
0004070094
-
-
New York: Wiley-Interscience
-
Nagata, M. (1962). Local Rings. New York: Wiley-Interscience.
-
(1962)
Local Rings
-
-
Nagata, M.1
-
17
-
-
34047129692
-
About minimal morphisms. Multiplicative Ideal Theory: A Tribute to the Work of Robert Gilmer. Springer-Verlag
-
to appear
-
Picavet, G., Picavet-L'Hermitte, M. About minimal morphisms. Multiplicative Ideal Theory: A Tribute to the Work of Robert Gilmer. Springer-Verlag, to appear.
-
-
-
Picavet, G.1
Picavet-L'Hermitte, M.2
-
18
-
-
84946621980
-
On minimal overrings of a Noetherian domain
-
Sato, J., Sugatani, T., Yochida, K. I. (1992). On minimal overrings of a Noetherian domain. Comm. Algebra 20:1735-1746.
-
(1992)
Comm. Algebra
, vol.20
, pp. 1735-1746
-
-
Sato, J.1
Sugatani, T.2
Yochida, K.I.3
|