메뉴 건너뛰기




Volumn 23, Issue 1, 2007, Pages 357-372

A procedure for the temperature reconstruction in corner domains from Cauchy data

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; BOUNDARY CONDITIONS; BOUNDARY VALUE PROBLEMS; DATA REDUCTION; FINITE ELEMENT METHOD; NUMERICAL ANALYSIS;

EID: 33947683821     PISSN: 02665611     EISSN: 13616420     Source Type: Journal    
DOI: 10.1088/0266-5611/23/1/020     Document Type: Article
Times cited : (7)

References (21)
  • 3
    • 0001908330 scopus 로고
    • Uniqueness in the Cauchy problem for partial differential equations
    • Calderón A-P 1958 Uniqueness in the Cauchy problem for partial differential equations Am. J. Math. 80 16-36
    • (1958) Am. J. Math. , vol.80 , Issue.1 , pp. 16-36
    • Calderón, A.-P.1
  • 4
    • 0002554964 scopus 로고
    • Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles deux variables indépendantes
    • Carleman T 1939 Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles deux variables indépendantes Ark. Mat., Astr. Fys. 26 1-9
    • (1939) Ark. Mat., Astr. Fys. , vol.26 , pp. 1-9
    • Carleman, T.1
  • 5
    • 0342572571 scopus 로고    scopus 로고
    • The Cauchy problem for Laplace's equation via the conjugate gradient method
    • Ho D N and Lesnic D 2000 The Cauchy problem for Laplace's equation via the conjugate gradient method IMA J. Appl. Math. 65 199-217
    • (2000) IMA J. Appl. Math. , vol.65 , Issue.2 , pp. 199-217
    • Ho, D.N.1    Lesnic, D.2
  • 6
    • 0002500486 scopus 로고
    • Sur les problèmes aux dérivées partielles et leur signification physique
    • Hadamard J 1902 Sur les problèmes aux dérivées partielles et leur signification physique Princeton Univ. Bull. 13 49-52
    • (1902) Princeton Univ. Bull. , vol.13 , pp. 49-52
    • Hadamard, J.1
  • 9
    • 4644351704 scopus 로고    scopus 로고
    • An iterative procedure for solving a Cauchy problem for second order elliptic equations
    • Johansson T 2004 An iterative procedure for solving a Cauchy problem for second order elliptic equations Math. Nachr. 272 46-54
    • (2004) Math. Nachr. , vol.272 , Issue.1 , pp. 46-54
    • Johansson, T.1
  • 10
    • 33645511271 scopus 로고    scopus 로고
    • An iterative method for a Cauchy problem for the heat equation
    • Johansson T 2006 An iterative method for a Cauchy problem for the heat equation IMA J. Appl. Math. 71 262-86
    • (2006) IMA J. Appl. Math. , vol.71 , Issue.2 , pp. 262-286
    • Johansson, T.1
  • 11
    • 0026370571 scopus 로고
    • A computational quasi-reversibility method for Cauchy problems for Laplace's equation
    • Klibanov V K and Santosa F 1991 A computational quasi-reversibility method for Cauchy problems for Laplace's equation SIAM J. Appl. Math. 51 1653-75
    • (1991) SIAM J. Appl. Math. , vol.51 , Issue.6 , pp. 1653-1675
    • Klibanov, V.K.1    Santosa, F.2
  • 12
    • 0000309125 scopus 로고
    • Boundary problems for elliptic equations in domains with conical or angular points
    • Kondrat'ev V A 1967 Boundary problems for elliptic equations in domains with conical or angular points Trudy Moskov. Mat. Obshch. 16 209-92
    • (1967) Trudy Moskov. Mat. Obshch. , vol.16 , pp. 209-292
    • Kondrat'Ev, V.A.1
  • 13
    • 0000309125 scopus 로고
    • Boundary problems for elliptic equations in domains with conical or angular points
    • Kondrat'ev V A 1967 Boundary problems for elliptic equations in domains with conical or angular points Trans. Moscow Mat. Soc. 16 227-313 (Engl. Transl.)
    • (1967) Trans. Moscow Mat. Soc. , vol.16 , pp. 227-313
    • Kondrat'Ev, V.A.1
  • 14
    • 4644369003 scopus 로고
    • On iterative procedures for solving ill-posed boundary value problems that preserve differential equations
    • Kozlov V A and Maz'ya V G 1989 On iterative procedures for solving ill-posed boundary value problems that preserve differential equations Algebra i Analiz 1 144-70
    • (1989) Algebra i Analiz , vol.1 , pp. 144-170
    • Kozlov, V.A.1    Maz'Ya, V.G.2
  • 15
    • 0000710664 scopus 로고
    • On iterative procedures for solving ill-posed boundary value problems that preserve differential equations
    • Kozlov V A and Maz'ya V G 1990 On iterative procedures for solving ill-posed boundary value problems that preserve differential equations Leningrad Math. J. 1 1207-28 (Engl. Transl.)
    • (1990) Leningrad Math. J. , vol.1 , pp. 1207-1228
    • Kozlov, V.A.1    Maz'Ya, V.G.2
  • 16
    • 27344440249 scopus 로고
    • An iterative method for solving the Cauchy problem for elliptic equations
    • Kozlov V A, Maz'ya V G and Fomin A V 1991 An iterative method for solving the Cauchy problem for elliptic equations Zh. Vychisl. Mat. i Mat. Fiz. 31 64-74
    • (1991) Zh. Vychisl. Mat. i Mat. Fiz. , vol.31 , pp. 64-74
    • Kozlov, V.A.1    Maz'Ya, V.G.2    Fomin, A.V.3
  • 17
    • 0002783988 scopus 로고
    • An iterative method for solving the Cauchy problem for elliptic equations
    • Kozlov V A, Maz'ya V G and Fomin A V 1991 An iterative method for solving the Cauchy problem for elliptic equations USSR Comput. Math. and Math. Phys. 31 45-52 (Engl. Transl.)
    • (1991) USSR Comput. Math. and Math. Phys. , vol.31 , pp. 45-52
    • Kozlov, V.A.1    Maz'Ya, V.G.2    Fomin, A.V.3
  • 20
    • 0036564729 scopus 로고    scopus 로고
    • Conjugate gradient-boundary element method for the Cauchy problem in elasticity
    • Marin L, Ho D N and Lesnic D 2003 Conjugate gradient-boundary element method for the Cauchy problem in elasticity Q. J. Mech. Appl. Math. 55 227-47
    • (2003) Q. J. Mech. Appl. Math. , vol.55 , Issue.2 , pp. 227-247
    • Marin, L.1    Ho, D.N.2    Lesnic, D.3
  • 21
    • 33745158426 scopus 로고    scopus 로고
    • Schauder estimates for solutions to boundary value problems for second order elliptic systems in polyhedral domains
    • Maz'ya V and Rossmann J 2004 Schauder estimates for solutions to boundary value problems for second order elliptic systems in polyhedral domains Appl. Anal. 83 271-378
    • (2004) Appl. Anal. , vol.83 , Issue.3 , pp. 271-378
    • Maz'Ya, V.1    Rossmann, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.