-
1
-
-
0034908758
-
Recovery of normal hemopoiesis in disseminated cancer therapy - a model
-
Afenya E.K. Recovery of normal hemopoiesis in disseminated cancer therapy - a model. Math. Biosci. 172 (2001) 15
-
(2001)
Math. Biosci.
, vol.172
, pp. 15
-
-
Afenya, E.K.1
-
2
-
-
0000175023
-
The effect of drug schedule on responsiveness to chemotherapy
-
Agur Z. The effect of drug schedule on responsiveness to chemotherapy. Ann. New York Acad. Sci. 504 (1986) 274
-
(1986)
Ann. New York Acad. Sci.
, vol.504
, pp. 274
-
-
Agur, Z.1
-
3
-
-
0023803541
-
Reduction of cytotoxicity to normal tissues by new regimes of cell-cycle phase-specific drugs
-
Agur Z., Arnon R., and Schechter B. Reduction of cytotoxicity to normal tissues by new regimes of cell-cycle phase-specific drugs. Math. Biosci. 92 (1988) 1
-
(1988)
Math. Biosci.
, vol.92
, pp. 1
-
-
Agur, Z.1
Arnon, R.2
Schechter, B.3
-
4
-
-
0026606696
-
A theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs
-
Cojocaru L., and Agur Z. A theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs. Math. Biosci. 109 (1992) 85
-
(1992)
Math. Biosci.
, vol.109
, pp. 85
-
-
Cojocaru, L.1
Agur, Z.2
-
6
-
-
0022034201
-
Mathematical model of cancer chemotherapy. Periodic schedules of phase-specific cytotoxic-agent administration increasing the selectivity of therapy
-
Dibrov B.F., Zhabotinsky A.M., Neyfakh Yu.A., Orlova M.P., and Churikova L.I. Mathematical model of cancer chemotherapy. Periodic schedules of phase-specific cytotoxic-agent administration increasing the selectivity of therapy. Math. Biosci. 73 (1985) 1
-
(1985)
Math. Biosci.
, vol.73
, pp. 1
-
-
Dibrov, B.F.1
Zhabotinsky, A.M.2
Neyfakh, Yu.A.3
Orlova, M.P.4
Churikova, L.I.5
-
7
-
-
0002864034
-
A gradient method for application of chemotherapy protocols
-
Duda Z. A gradient method for application of chemotherapy protocols. J. Biol. Syst. 3 (1995) 3
-
(1995)
J. Biol. Syst.
, vol.3
, pp. 3
-
-
Duda, Z.1
-
8
-
-
0003409780
-
-
Springer
-
Eisen M. Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biomathematics vol. 30 (1979), Springer
-
(1979)
Lecture Notes in Biomathematics
, vol.30
-
-
Eisen, M.1
-
9
-
-
0033687699
-
Optimal control applied to cell-cycle-specific cancer chemotherapy
-
Fister K.R., and Panetta J.C. Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math. 60 (2000) 1059
-
(2000)
SIAM J. Appl. Math.
, vol.60
, pp. 1059
-
-
Fister, K.R.1
Panetta, J.C.2
-
10
-
-
0028064410
-
Paclitaxel administered by 1-hour infusion
-
Hainsworth J.D., and Greco F.A. Paclitaxel administered by 1-hour infusion. Cancer 74 (1994) 1377
-
(1994)
Cancer
, vol.74
, pp. 1377
-
-
Hainsworth, J.D.1
Greco, F.A.2
-
11
-
-
0018177153
-
Cancer chemotherapy. The relevance of certain concepts of cell cycle kinetics
-
Hill B.T. Cancer chemotherapy. The relevance of certain concepts of cell cycle kinetics. BBB (Rev. Canc. 516 (1978) 389
-
(1978)
BBB (Rev. Canc.
, vol.516
, pp. 389
-
-
Hill, B.T.1
-
12
-
-
0000916037
-
The high-order maximal principle and its application to singular controls
-
Krener A. The high-order maximal principle and its application to singular controls. SIAM J. Contr. Optim. 15 (1977) 256
-
(1977)
SIAM J. Contr. Optim.
, vol.15
, pp. 256
-
-
Krener, A.1
-
13
-
-
1542517195
-
Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy
-
Ledzewicz U., and Schättler H. Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. J. Optim. Theory Appl. - JOTA 114 (2002) 609
-
(2002)
J. Optim. Theory Appl. - JOTA
, vol.114
, pp. 609
-
-
Ledzewicz, U.1
Schättler, H.2
-
14
-
-
0003328875
-
Analysis of a cell-cycle specific model for cancer chemotherapy
-
Ledzewicz U., and Schättler H. Analysis of a cell-cycle specific model for cancer chemotherapy. J. Biol. Syst. 10 (2002) 183
-
(2002)
J. Biol. Syst.
, vol.10
, pp. 183
-
-
Ledzewicz, U.1
Schättler, H.2
-
15
-
-
33749264977
-
Controlling a model for bone marrow dynamics in cancer chemotherapy
-
Ledzewicz U., and Schättler H. Controlling a model for bone marrow dynamics in cancer chemotherapy. Math. Biosci. Eng. 1 (2004) 95
-
(2004)
Math. Biosci. Eng.
, vol.1
, pp. 95
-
-
Ledzewicz, U.1
Schättler, H.2
-
16
-
-
33947597174
-
The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models
-
Ledzewicz U., and Schättler H. The influence of PK/PD on the structure of optimal controls in cancer chemotherapy models. Math. Biosci. Eng. 2 3 (2005) 561
-
(2005)
Math. Biosci. Eng.
, vol.2
, Issue.3
, pp. 561
-
-
Ledzewicz, U.1
Schättler, H.2
-
17
-
-
0027238859
-
Cell kill kinetics and cell cycle effects of Taxol on human and hamster ovarian cell lines
-
Lopes M.M., Adams E.G., Pitts T.W., and Bhuyan B.K. Cell kill kinetics and cell cycle effects of Taxol on human and hamster ovarian cell lines. Cancer Chemother. Pharmacol. 32 (1993) 235
-
(1993)
Cancer Chemother. Pharmacol.
, vol.32
, pp. 235
-
-
Lopes, M.M.1
Adams, E.G.2
Pitts, T.W.3
Bhuyan, B.K.4
-
18
-
-
0026955375
-
Optimal control drug scheduling of cancer chemotherapy
-
Martin R.B. Optimal control drug scheduling of cancer chemotherapy. Automatica 28 (1992) 1113
-
(1992)
Automatica
, vol.28
, pp. 1113
-
-
Martin, R.B.1
-
20
-
-
0027970794
-
Optimal drug regimens in cancer chemotherapy for single drugs that block progression through the cell cycle
-
Murray J.M. Optimal drug regimens in cancer chemotherapy for single drugs that block progression through the cell cycle. Math. Biosci. 123 (1994) 183
-
(1994)
Math. Biosci.
, vol.123
, pp. 183
-
-
Murray, J.M.1
-
21
-
-
0036575268
-
Sufficient conditions for relative minima of broken extremals in optimal control theory
-
Noble J., and Schättler H. Sufficient conditions for relative minima of broken extremals in optimal control theory. J. Math. Anal. Appl. 269 (2002) 98
-
(2002)
J. Math. Anal. Appl.
, vol.269
, pp. 98
-
-
Noble, J.1
Schättler, H.2
-
22
-
-
0030867447
-
A mathematical model of breast and ovarian cancer treated with paclitaxel
-
Panetta J.C. A mathematical model of breast and ovarian cancer treated with paclitaxel. Math. Biosci. 146 (1997) 83
-
(1997)
Math. Biosci.
, vol.146
, pp. 83
-
-
Panetta, J.C.1
-
23
-
-
0003716451
-
-
MacMillan, New York
-
Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., and Mishchenko E.F. The Mathematical Theory of Optimal Processes (1964), MacMillan, New York
-
(1964)
The Mathematical Theory of Optimal Processes
-
-
Pontryagin, L.S.1
Boltyanskii, V.G.2
Gamkrelidze, R.V.3
Mishchenko, E.F.4
-
24
-
-
0025049681
-
Role of optimal control in cancer chemotherapy
-
Swan G.W. Role of optimal control in cancer chemotherapy. Math. Biosci. 101 (1990) 237
-
(1990)
Math. Biosci.
, vol.101
, pp. 237
-
-
Swan, G.W.1
-
26
-
-
0029938149
-
Optimal control problems arising in cell-cycle-specific cancer chemotherapy
-
Swierniak A., Polanski A., and Kimmel M. Optimal control problems arising in cell-cycle-specific cancer chemotherapy. Cell Proliferat. 29 (1996) 117
-
(1996)
Cell Proliferat.
, vol.29
, pp. 117
-
-
Swierniak, A.1
Polanski, A.2
Kimmel, M.3
-
27
-
-
0027359987
-
Preliminary evaluation of a multicenter randomized study of TAXOL (paclitaxel) dose and infusion length in platinum-treated ovarian cancer
-
Ten Bokkel Huinink W.W., Eisenhauser E., and Swenerton K. Preliminary evaluation of a multicenter randomized study of TAXOL (paclitaxel) dose and infusion length in platinum-treated ovarian cancer. Cancer Treatment Rev. 19 (1983) 79
-
(1983)
Cancer Treatment Rev.
, vol.19
, pp. 79
-
-
Ten Bokkel Huinink, W.W.1
Eisenhauser, E.2
Swenerton, K.3
-
28
-
-
0001064695
-
Resonance phenomena in cell population chemotherapy models
-
Webb G.F. Resonance phenomena in cell population chemotherapy models. Rocky Mountain J. Math. 20 (1990) 1195
-
(1990)
Rocky Mountain J. Math.
, vol.20
, pp. 1195
-
-
Webb, G.F.1
-
29
-
-
0343911836
-
Resonance in periodic chemotherapy scheduling
-
Lakshmikantham V. (Ed), Walter DeGruyter, Berlin
-
Webb G.F. Resonance in periodic chemotherapy scheduling. In: Lakshmikantham V. (Ed). Proceedings of the First World Congress of Nonlinear Analysts vol. 4 (1995), Walter DeGruyter, Berlin 3463
-
(1995)
Proceedings of the First World Congress of Nonlinear Analysts
, vol.4
, pp. 3463
-
-
Webb, G.F.1
|