메뉴 건너뛰기




Volumn 14, Issue 1, 2007, Pages 28-56

Asymptotics of localized solutions of the one-dimensional wave equation with variable velocity. I. The Cauchy problem

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33947517931     PISSN: 10619208     EISSN: None     Source Type: Journal    
DOI: 10.1134/S1061920807010037     Document Type: Article
Times cited : (19)

References (26)
  • 1
    • 0039330656 scopus 로고
    • Fundamental Solution of Hyperbolic Equations with Variable Coefficients
    • Mat. Sbornik, 94, 2
    • V. M. Babich, "Fundamental Solution of Hyperbolic Equations with Variable Coefficients," Mat. Sbornik 52 (94) (2), 709-738 (1960).
    • (1960) , vol.52 , pp. 709-738
    • Babich, V.M.1
  • 3
    • 0003408035 scopus 로고
    • Nauka, Moscow, Academic Press, Harcourt Brace Jovanovich, New York-London
    • L. M. Brekhovskikh, Waves in Layered Media (Nauka, Moscow, 1973; Academic Press, Harcourt Brace Jovanovich, New York-London, 1980);
    • (1973) Waves in Layered Media
    • Brekhovskikh, L.M.1
  • 5
    • 0002102383 scopus 로고
    • Asymptotic Fast-Decreasing Solution of Linear, Strictly Hyperbolic Systems with Variable Coefficients
    • S.Yu. Dobrokhotov, V. P. Maslov, P. N. Zhevandrov, and A. I. Shafarevich, "Asymptotic Fast-Decreasing Solution of Linear, Strictly Hyperbolic Systems with Variable Coefficients," Math. Notes 49 (4), 355-365 (1991).
    • (1991) Math. Notes , vol.49 , Issue.4 , pp. 355-365
    • Dobrokhotov, S.Y.1    Maslov, V.P.2    Zhevandrov, P.N.3    Shafarevich, A.I.4
  • 6
    • 33947524356 scopus 로고    scopus 로고
    • Asymptotic Theory of Tsunami Waves: Geometrical Aspects and the Generalized Maslov Representation
    • Reports of Kyoto Research Mathematical Institute Kyoto Research Mathematical Institute
    • S. Dobrokhotov, S. Sekerzh-Zenkovich, B. Tirozzi, and T. Tudorovski, "Asymptotic Theory of Tsunami Waves: Geometrical Aspects and the Generalized Maslov Representation," in Workshop on Renormalization Group, 2006, Reports of Kyoto Research Mathematical Institute (Kyoto Research Mathematical Institute, 2006), pp. 118-152; http://pamina.phys. uniroma1.it/kyoto180106.pdf.
    • (2006) Workshop on Renormalization Group, 2006 , pp. 118-152
    • Dobrokhotov, S.1    Sekerzh-Zenkovich, S.2    Tirozzi, B.3    Tudorovski, T.4
  • 9
    • 0037253527 scopus 로고    scopus 로고
    • Asymptotic Expansions and the Maslov Canonical Operator in the Linear Theory of Water Waves. I. Main Constructions and Equations for Surface Gravity Waves
    • S.Yu. Dobrokhotov and P.N. Zhevandrov, "Asymptotic Expansions and the Maslov Canonical Operator in the Linear Theory of Water Waves. I. Main Constructions and Equations for Surface Gravity Waves," Russ. J. Math. Phys. 10 (1), 1-31 (2003).
    • (2003) Russ. J. Math. Phys , vol.10 , Issue.1 , pp. 1-31
    • Dobrokhotov, S.Y.1    Zhevandrov, P.N.2
  • 10
    • 33947509964 scopus 로고    scopus 로고
    • V. Ivrii, Linear Hyperbolic Equations, in Partial Differential Equations (4), Ed. by Yu. V. Egorov and M.A. Shubin, Modern Problems of Mathematcs, Fundamental Research 33 (VINITI, Moscow, 1988), pp. 157-250.
    • V. Ivrii, "Linear Hyperbolic Equations," in Partial Differential Equations (4), Ed. by Yu. V. Egorov and M.A. Shubin, Modern Problems of Mathematcs, Fundamental Research 33 (VINITI, Moscow, 1988), pp. 157-250.
  • 11
    • 33947536928 scopus 로고    scopus 로고
    • Generation ofModulated Vibrations in Nonhomogeneous Media
    • Zapiski nauchnykh seminarov LOMI 104
    • A. P. Kiselev, "Generation ofModulated Vibrations in Nonhomogeneous Media," in Mathematical Questions of Wave Propagation Theory 11, Zapiski nauchnykh seminarov LOMI 104, 111-122.
    • Mathematical Questions of Wave Propagation Theory , vol.11 , pp. 111-122
    • Kiselev, A.P.1
  • 17
    • 1842557759 scopus 로고
    • Semi-Classical Approximation in Quantum Mechanics, Mathematical Physics and Applied Mathematics
    • 5 D. Reidel, Dordrecht
    • V.P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics, Mathematical Physics and Applied Mathematics 7, Contemporary Mathematics 5 (D. Reidel, Dordrecht, 1981).
    • (1981) Contemporary Mathematics , vol.7
    • Maslov, V.P.1    Fedoriuk, M.V.2
  • 20
  • 21
    • 6544232462 scopus 로고    scopus 로고
    • The Hamilton Method and Its Application to Water Waves
    • J. L. Singe, "The Hamilton Method and Its Application to Water Waves," Proc. Roy. Irish Acad. A63, 1-34 (2006).
    • (2006) Proc. Roy. Irish Acad , vol.A63 , pp. 1-34
    • Singe, J.L.1
  • 23
    • 0003057670 scopus 로고
    • Regular Degeneration and Boundary Layer for Linear Differential Equations with Small Parameter
    • M. I. Vishik and L.A. Lusternik, "Regular Degeneration and Boundary Layer for Linear Differential Equations with Small Parameter," Uspekhi Mat. Nauk 12 (5), 3-122 (1957)
    • (1957) Uspekhi Mat. Nauk , vol.12 , Issue.5 , pp. 3-122
    • Vishik, M.I.1    Lusternik, L.A.2
  • 24
    • 33947497857 scopus 로고    scopus 로고
    • [American Math. Society Transl. (2) 20, 239-364 (1962)].
    • [American Math. Society Transl. (2) 20, 239-364 (1962)].
  • 25
    • 34648879768 scopus 로고
    • Tsunami Waves
    • Nauka, Moscow
    • S. S. Voit, "Tsunami Waves," in Physics of Ocean, Vol. 2 (Nauka, Moscow, 1978), pp. 229-254.
    • (1978) Physics of Ocean , vol.2 , pp. 229-254
    • Voit, S.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.