메뉴 건너뛰기




Volumn 46, Issue 5, 2007, Pages 1771-1777

Computational studies of structures and properties of metallaboranes. Part 3: Protonated iron bis(dicarbollide), [3-Fe-(1,2-C2B 9H11])2H-

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33947409017     PISSN: 00201669     EISSN: None     Source Type: Journal    
DOI: 10.1021/ic062096p     Document Type: Article
Times cited : (16)

References (61)
  • 1
    • 0004233970 scopus 로고    scopus 로고
    • 3rd ed, Wiley-VCH: Weinheim, Germany
    • Elschenbroich, C. Organometallics, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2006.
    • (2006) Organometallics
    • Elschenbroich, C.1
  • 2
    • 0037979409 scopus 로고    scopus 로고
    • See also a special issue on the 50th anniversary of the discovery of ferrocene
    • See also a special issue on the 50th anniversary of the discovery of ferrocene: Adams, R. D. J. Organomet. Chem. 2001, 637, 1.
    • (2001) J. Organomet. Chem , vol.637 , pp. 1
    • Adams, R.D.1
  • 7
    • 4243694214 scopus 로고    scopus 로고
    • For a review of iron bisdicarbollides, see
    • For a review of iron bis(dicarbollides), see: Sivaev, I. B.; Bregadze, V. I. J. Organomet. Chem. 2000, 614, 27.
    • (2000) J. Organomet. Chem , vol.614 , pp. 27
    • Sivaev, I.B.1    Bregadze, V.I.2
  • 11
    • 0003396304 scopus 로고    scopus 로고
    • For a review, see:, Allinger, N. L, Kollman, P. A, Clark, T, Schaefer, H. F, Gasteiger, J, Schreiner, P. R, Eds, Wiley: Chichester, U.K
    • (b) For a review, see: Bühl, M. In Encyclopedia of Computational Chemistry; Schleyer, P. v. R., Allinger, N. L., Kollman, P. A., Clark, T., Schaefer, H. F., Gasteiger, J., Schreiner, P. R., Eds.; Wiley: Chichester, U.K., 1998; p 1835.
    • (1998) Encyclopedia of Computational Chemistry; Schleyer, P , vol.R , pp. 1835
    • Bühl, M.1
  • 12
    • 23844554810 scopus 로고    scopus 로고
    • For a recent application of this structural tool [also called the ab initio-(DFT)/GIAO/NMR method] to boron compounds, see, e.g.: Bakardjiev, M.; Holub, J.; Štíbr, B.; Hnyk, D.; Wrackmeyer, B. Inorg. Chem. 2005, 44, 5826 and references therein.
    • For a recent application of this structural tool [also called the ab initio-(DFT)/GIAO/NMR method] to boron compounds, see, e.g.: Bakardjiev, M.; Holub, J.; Štíbr, B.; Hnyk, D.; Wrackmeyer, B. Inorg. Chem. 2005, 44, 5826 and references therein.
  • 18
    • 0000857737 scopus 로고
    • See:, and references therein
    • See: Plešek, J. Chem. Rev. 1992, 92, 269 and references therein.
    • (1992) Chem. Rev , vol.92 , pp. 269
    • Plešek, J.1
  • 20
    • 33646728601 scopus 로고    scopus 로고
    • - has been studied; see: Fanfrlík. J.; Lepšík, M.; Horinek, D.; Havlas, Z.; Hobza. P. ChemPhysChem 2006, 7, 1100.
    • - has been studied; see: Fanfrlík. J.; Lepšík, M.; Horinek, D.; Havlas, Z.; Hobza. P. ChemPhysChem 2006, 7, 1100.
  • 29
    • 0003838469 scopus 로고    scopus 로고
    • See, for instance: a, Wiley-VCH: Weinheim, Germany, and the extensive bibliography therein
    • See, for instance: (a) Koch, W.; Holthausen, M. C. A Chemist's Guide to Density Functional Theory; Wiley-VCH: Weinheim, Germany, 2000, and the extensive bibliography therein.
    • (2000) A Chemist's Guide to Density Functional Theory
    • Koch, W.1    Holthausen, M.C.2
  • 30
    • 0034228773 scopus 로고    scopus 로고
    • It should be noted that hybrid functionals such as B3LYP need not be superior to pure, gradient-corrected functionals, as far as geometries of transition-metal complexes are concerned; see, for example: (b) Barden, C. J, Rienstra-Kiracofe, J. C, Schaefer, H. F. J. Chem. Phys. 2000, 113, 690
    • It should be noted that hybrid functionals such as B3LYP need not be superior to pure, gradient-corrected functionals, as far as geometries of transition-metal complexes are concerned; see, for example: (b) Barden, C. J.; Rienstra-Kiracofe, J. C.; Schaefer, H. F. J. Chem. Phys. 2000, 113, 690.
  • 38
  • 43
    • 1242268874 scopus 로고    scopus 로고
    • GIAO-DFT implementation: Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497.
    • (c) GIAO-DFT implementation: Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. 1996, 104, 5497.
  • 47
    • 33947369196 scopus 로고    scopus 로고
    • A reviewer has voiced concerns regarding the use of potentially unbalanced basis sets that do not contain polarization functions on all hydrogen atoms, but only on the critical proton. In our case, the presence or absence of such polarization functions on the terminal H atoms should have no significant effect on the relative energies and properties of the isomers. This expectation is borne out by some test calculations: For example, the relative energy of 2c with respect to 2b changes by no more than 0.2 kJ/mol upon going from the 6-31G-(d) to the 6-31G(d,p) basis on the terminal H atoms. Similarly, the absolute 11B shielding in B2H6, changes by less than 0.2 ppm upon going from basis II′ to the full basis II with a (3s1p) basis on H. Effects on relative 11B chemical shifts are expected to be even smaller. There is thus no evidence for any unbalance in the basis sets that we are using
    • 11B chemical shifts are expected to be even smaller. There is thus no evidence for any "unbalance" in the basis sets that we are using.
  • 49
    • 33947413630 scopus 로고    scopus 로고
    • Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Milium, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keith, T, Al-La
    • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Milium, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision B.01; Gaussian, Inc.; Pittsburgh, PA, 2003.
  • 51
    • 33947400755 scopus 로고    scopus 로고
    • When optimizations of isomers of 2a-2c with a different location of the proton in the equatorial belt were attempted, rearrangements (dicarbollide rotations) occurred during minimization, affording the original or another variant of 2a-2c.
    • When optimizations of isomers of 2a-2c with a different location of the proton in the equatorial belt were attempted, rearrangements (dicarbollide rotations) occurred during minimization, affording the original or another variant of 2a-2c.
  • 53
    • 33947412048 scopus 로고    scopus 로고
    • 6)H [optimized, Fe-H = 1.673 Å, mean = B-H 1.423 Å; observed for substituted derivative, Fe-H = 1.63(3) Å, B-H = 1.45(3) Å].
    • 6)H [optimized, Fe-H = 1.673 Å, mean = B-H 1.423 Å; observed for substituted derivative, Fe-H = 1.63(3) Å, B-H = 1.45(3) Å].
  • 54
    • 33947355937 scopus 로고    scopus 로고
    • The same was found at the B3LYP/II′ level, where 2c is slightly more stable than 2b, by 0.2 kJ/mol.
    • The same was found at the B3LYP/II′ level, where 2c is slightly more stable than 2b, by 0.2 kJ/mol.
  • 55
    • 33947418215 scopus 로고    scopus 로고
    • The difference between TS2cc and TS2cc′ is that the latter scrambles, among others, only B4 with B4′ and B7 with B7′, whereas the former scrambles all four of these.
    • The difference between TS2cc and TS2cc′ is that the latter scrambles, among others, only B4 with B4′ and B7 with B7′, whereas the former scrambles all four of these.
  • 57
    • 0039745580 scopus 로고    scopus 로고
    • 57Fe chemical shift has been reported; see: (a) Koridze, A. A.; Petrovskii, P. V.; Gubin, S. P.; Fedin, E. I. J. Organomet. Chem. 1975, 93, C26.
    • 57Fe chemical shift has been reported; see: (a) Koridze, A. A.; Petrovskii, P. V.; Gubin, S. P.; Fedin, E. I. J. Organomet. Chem. 1975, 93, C26.
  • 59
    • 33947389380 scopus 로고    scopus 로고
    • An important reason for the stabilization of 2c over 2b in a polar environment is certainly the larger dipole moment of the former compared to that of the latter [4.8 D vs 2.6 D, respectively, at the BP86/AE1(*) level in vacuo; these values increase by ca. 70% each in solution, Non-electrostatic contributions to the total free energy in solution (which are not included in the energies we report) are very similar for all isomers considered. It should be kept in mind that PCM approaches are very crude models that can, at best, describe long-range electrostatic interactions qualitatively, without accounting for specific solute-solvent interactions such as hydrogen bonds. We just note that the qualitative ordering of 2b and 2c as it emerges from the PCM data appears to be consistent with the results from the NMR computations
    • An important reason for the stabilization of 2c over 2b in a polar environment is certainly the larger dipole moment of the former compared to that of the latter [4.8 D vs 2.6 D, respectively, at the BP86/AE1(*) level in vacuo; these values increase by ca. 70% each in solution]. Non-electrostatic contributions to the total free energy in solution (which are not included in the energies we report) are very similar for all isomers considered. It should be kept in mind that PCM approaches are very crude models that can, at best, describe long-range electrostatic interactions qualitatively, without accounting for specific solute-solvent interactions such as hydrogen bonds. We just note that the qualitative ordering of 2b and 2c as it emerges from the PCM data appears to be consistent with the results from the NMR computations.
  • 60
    • 33947430705 scopus 로고    scopus 로고
    • It should be noted that the energetic difference between these isomers is also very small in the continuum, arguably within the accuracy of our computational level. In this case, discrimination via the chemical shifts is more reliable
    • It should be noted that the energetic difference between these isomers is also very small in the continuum, arguably within the accuracy of our computational level. In this case, discrimination via the chemical shifts is more reliable.
  • 61
    • 33947384691 scopus 로고    scopus 로고
    • A good accord between computed and experimental chemical shifts cannot prove the correctness of the structure used in the computations, because the possibility cannot be excluded that two or more structures can show the same or very similar δ values. In that case, other criteria can be used to make a distinction, e.g, as in our case, relative energies. In contrast, a structure can be disproved in the case of a poor accord between theory and experiment, i.e, if it produces errors exceeding the usual accuracy of the computational method applied, as for 2b in our case
    • A good accord between computed and experimental chemical shifts cannot prove the correctness of the structure used in the computations, because the possibility cannot be excluded that two or more structures can show the same or very similar δ values. In that case, other criteria can be used to make a distinction, e.g., as in our case, relative energies. In contrast, a structure can be disproved in the case of a poor accord between theory and experiment, i.e., if it produces errors exceeding the usual accuracy of the computational method applied, as for 2b in our case


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.