메뉴 건너뛰기




Volumn 6, Issue 12, 2006, Pages 1721-1750

Overview of physical models and statistical approaches for weak gaseous plume detection using passive Infrared hyperspectral imagery

Author keywords

Clutter; Errors in predictors; Generalized least squares; Infrared; Model averaging; Plume detection; Temperature emissivity separation

Indexed keywords

CLUTTER (INFORMATION THEORY); INFRARED RADIATION; SPECTROSCOPY;

EID: 33947389273     PISSN: 14243210     EISSN: 14248220     Source Type: Journal    
DOI: 10.3390/s6121721     Document Type: Review
Times cited : (38)

References (52)
  • 3
    • 27544457397 scopus 로고    scopus 로고
    • New Models for Hyperspectral Anomaly Detection and Un-Mixing, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII
    • edited by Sylvia S. Shen, Paul E. Lewis
    • Bernhardt M.; Heather, J.; Smith, M. New Models for Hyperspectral Anomaly Detection and Un-Mixing, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, edited by Sylvia S. Shen, Paul E. Lewis. Proc. SPIE. 2005, 5806, 720-730.
    • (2005) Proc. SPIE , vol.5806 , pp. 720-730
    • Bernhardt, M.1    Heather, J.2    Smith, M.3
  • 4
    • 85032751277 scopus 로고    scopus 로고
    • Detection Algorithms for Hyperspectral Imaging Applications
    • Manolakis, D.; Shaw, G. Detection Algorithms for Hyperspectral Imaging Applications. IEEE Signal Processing Magazine. 2002, 19(1), 29-43.
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.1    Shaw, G.2
  • 5
    • 84876613958 scopus 로고    scopus 로고
    • Bajorski, P. Analytical Comparison of the Matched Filter and Orthogonal Subspace Projection Detectors in Structured Models for Hyperspectral Images, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, edited by Sylvia S. Shen, Paul E. Lewis, Proc. SPIE. 2006, 6233, 1-12.
    • Bajorski, P. Analytical Comparison of the Matched Filter and Orthogonal Subspace Projection Detectors in Structured Models for Hyperspectral Images, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII, edited by Sylvia S. Shen, Paul E. Lewis, Proc. SPIE. 2006, 6233, 1-12.
  • 6
    • 84876608931 scopus 로고    scopus 로고
    • Burr, T.; Fry, H.; McVey, B.; Sander, E. Chemical Identification using Bayesian Model Selection, 2002 Proceedings of the American Statistical Association, Section on Physical and Engineering Sciences[CD-ROM], Ann Arbor, Michigan: American Statistical Association, Los Alamos National Laboratory Unclassified Report, LA-UR-02-7281, available from T. Burr upon request.
    • Burr, T.; Fry, H.; McVey, B.; Sander, E. Chemical Identification using Bayesian Model Selection, 2002 Proceedings of the American Statistical Association, Section on Physical and Engineering Sciences[CD-ROM], Ann Arbor, Michigan: American Statistical Association, Los Alamos National Laboratory Unclassified Report, LA-UR-02-7281, available from T. Burr upon request.
  • 7
    • 85039233026 scopus 로고    scopus 로고
    • Technical Letter Report for Non-Linear methods Task: Fits of Nonlinear Bayesian Regressin (NBLR) to Tanasi and Polecat Images
    • Heasler, P.; Hylden, J. Technical Letter Report for Non-Linear methods Task: Fits of Nonlinear Bayesian Regressin (NBLR) to Tanasi and Polecat Images, Pacific Northwest National Laboratory Official Use Only Report, 2005.
    • (2005) Pacific Northwest National Laboratory Official Use Only Report
    • Heasler, P.1    Hylden, J.2
  • 9
    • 0035158123 scopus 로고    scopus 로고
    • Hyperspectral Adaptive Matched Filter Detectors: Practical Performance Comparison
    • Manolakis, D.; Siracusa, C.; Marden, D.; Shaw, G., Hyperspectral Adaptive Matched Filter Detectors: Practical Performance Comparison. Proc. SPIE. 2001, 4381, 18-33.
    • (2001) Proc. SPIE , vol.4381 , pp. 18-33
    • Manolakis, D.1    Siracusa, C.2    Marden, D.3    Shaw, G.4
  • 10
    • 10444221784 scopus 로고    scopus 로고
    • Gaseous Plume Detection in Hyperspectral Images: A Comparision of Methods, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X
    • Messinger, D. Gaseous Plume Detection in Hyperspectral Images: a Comparision of Methods, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X. Proc. SPIE. 2004, 5425, 592-603
    • (2004) Proc. SPIE , vol.5425 , pp. 592-603
    • Messinger, D.1
  • 11
    • 0035391123 scopus 로고    scopus 로고
    • Clustering to Improve Matched Filter Detection of Weak Gas Plumes in Hyperspectral Thermal Imagery
    • Funk, C.; Theiler, J.; Roberts, D.; Borel, C. Clustering to Improve Matched Filter Detection of Weak Gas Plumes in Hyperspectral Thermal Imagery. IEEE Trans. Geoscience and Remote Sensing. 2001, 39, 1410-1420.
    • (2001) IEEE Trans. Geoscience and Remote Sensing , vol.39 , pp. 1410-1420
    • Funk, C.1    Theiler, J.2    Roberts, D.3    Borel, C.4
  • 12
  • 13
    • 0027694784 scopus 로고
    • Separating Temperature and Emissivity in Thermal Multispectral Scanner Data: Implications for Recovering Land Surface Temperatures
    • Kealy, P.; Hook, S. Separating Temperature and Emissivity in Thermal Multispectral Scanner Data: Implications for Recovering Land Surface Temperatures. IEEE Transactions on Geoscience and Remote Sensing. 1993, 31(6): 1155-1164.
    • (1993) IEEE Transactions on Geoscience and Remote Sensing , vol.31 , Issue.6 , pp. 1155-1164
    • Kealy, P.1    Hook, S.2
  • 14
    • 33748638256 scopus 로고    scopus 로고
    • Lausten, K.; Resmini, R. A New Approach to Infer Surface Emissivity Parameters from Longwave Infrared Hyperspectral Measurements, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII. Proc. SPIE. 2006, 6233, 1-10.
    • Lausten, K.; Resmini, R. A New Approach to Infer Surface Emissivity Parameters from Longwave Infrared Hyperspectral Measurements, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII. Proc. SPIE. 2006, 6233, 1-10.
  • 15
    • 26844527369 scopus 로고    scopus 로고
    • Manolakis, D.; Amico, F. A Taxonomy of Algorithms for Chemical Vapor Detection with Hyperspectral Imaging Spectroscopy. Proc. SPIE. 2005, 5795, 125-133.
    • Manolakis, D.; Amico, F. A Taxonomy of Algorithms for Chemical Vapor Detection with Hyperspectral Imaging Spectroscopy. Proc. SPIE. 2005, 5795, 125-133.
  • 16
    • 85039217559 scopus 로고    scopus 로고
    • Nonlinear Signal contamination Effects for Gaseous Plume Detection in Hyperspectral Imagery
    • LAUR-06-1996, to appear. Proc. SPIE
    • Theiler, J.; Foy, B.; Fraser, A. Nonlinear Signal contamination Effects for Gaseous Plume Detection in Hyperspectral Imagery, Los Alamos National Laboratory Unclassified Report LAUR-06-1996, to appear. Proc. SPIE. 2007.
    • (2007) Los Alamos National Laboratory Unclassified Report
    • Theiler, J.1    Foy, B.2    Fraser, A.3
  • 17
    • 0036382613 scopus 로고    scopus 로고
    • Comparisons Between Hyperspectral Passive and Multispectral Active Sensor Measurements
    • Foy, B.; Petrin, R.; Quick, R.; Shimada, T.; Tiee, J. Comparisons Between Hyperspectral Passive and Multispectral Active Sensor Measurements. Proc. SPIE. 2002, 4722, 98-109.
    • (2002) Proc. SPIE , vol.4722 , pp. 98-109
    • Foy, B.1    Petrin, R.2    Quick, R.3    Shimada, T.4    Tiee, J.5
  • 18
    • 27544486778 scopus 로고    scopus 로고
    • Characterizing non-Gaussian Clutter and Detecting Weak Gaseous Plumes in Hyperspectral Imagery, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
    • Theiler, J.; Foy, B.; Fraser, A. Characterizing non-Gaussian Clutter and Detecting Weak Gaseous Plumes in Hyperspectral Imagery, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Proc. SPIE. 2005, 5806, 182-193.
    • (2005) Proc. SPIE , vol.5806 , pp. 182-193
    • Theiler, J.1    Foy, B.2    Fraser, A.3
  • 19
    • 84876637077 scopus 로고    scopus 로고
    • McVey, B.; Burr, T.; Fry, H. Distribution of Chemical False Positives for Hyperspectral Image Data, Los Alamos National Laboratory Restricted Release Technical Report LA-CP-02-521, cited with permission, 2003.
    • McVey, B.; Burr, T.; Fry, H. Distribution of Chemical False Positives for Hyperspectral Image Data, Los Alamos National Laboratory Restricted Release Technical Report LA-CP-02-521, cited with permission, 2003.
  • 20
    • 0035168125 scopus 로고    scopus 로고
    • On the Statistics of Hyperspectral Imaging Data
    • Manolakis, D.; Marden, D.; Kerekes, J.; Shaw, G. On the Statistics of Hyperspectral Imaging Data. Proc. SPIE. 2001, 4381, 308-316.
    • (2001) Proc. SPIE , vol.4381 , pp. 308-316
    • Manolakis, D.1    Marden, D.2    Kerekes, J.3    Shaw, G.4
  • 21
    • 10444280883 scopus 로고    scopus 로고
    • Using Elliptically Contoured Distributions to Model Hyperspectral Imaging Data and Generate Statistically Similar Synthetic Data
    • Marden, D.; Manolakis, D. Using Elliptically Contoured Distributions to Model Hyperspectral Imaging Data and Generate Statistically Similar Synthetic Data. Proc. SPIE. 2004, 5425, 558-572.
    • (2004) Proc. SPIE , vol.5425 , pp. 558-572
    • Marden, D.1    Manolakis, D.2
  • 22
    • 1642515081 scopus 로고    scopus 로고
    • Modeling Hyperspectral Imaging Data
    • Marden, D.; Manolakis, D. Modeling Hyperspectral Imaging Data. Proc. SPIE. 2003, 5093, 253-262.
    • (2003) Proc. SPIE , vol.5093 , pp. 253-262
    • Marden, D.1    Manolakis, D.2
  • 24
    • 1642434022 scopus 로고    scopus 로고
    • The Importance of Background in the Detection and Identification of Gas Plumes Using Emissive Infrared Hyperspectral Sensing
    • Mitchell, H.; Jellison, G.; Miller, D.; Salvaggio, C.; Miller, C. The Importance of Background in the Detection and Identification of Gas Plumes Using Emissive Infrared Hyperspectral Sensing. Proc. SPIE. 2003, 5093, 206-217.
    • (2003) Proc. SPIE , vol.5093 , pp. 206-217
    • Mitchell, H.1    Jellison, G.2    Miller, D.3    Salvaggio, C.4    Miller, C.5
  • 25
    • 1642515689 scopus 로고    scopus 로고
    • Impact of Background and Atmospheric Variability on Infrared Hyperspectral Chemical Detection Sensitivity
    • Sheen, D.; Gallagher, N.; Sharpe, S.; Anderson, K.; Schultz, J. Impact of Background and Atmospheric Variability on Infrared Hyperspectral Chemical Detection Sensitivity. Proc. SPIE. 2003, 5093, 218-229.
    • (2003) Proc. SPIE , vol.5093 , pp. 218-229
    • Sheen, D.1    Gallagher, N.2    Sharpe, S.3    Anderson, K.4    Schultz, J.5
  • 26
    • 1642434039 scopus 로고    scopus 로고
    • New Approach to Anomaly Detection in Hyperspectral Images, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII
    • Clare, P.; Bernhardt, M.; Oxford, W.; Murphy, S.; Godfree, P.; Wilkinson, V. New Approach to Anomaly Detection in Hyperspectral Images, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII. Proc. SPIE. 2003, 5093, 17-28.
    • (2003) Proc. SPIE , vol.5093 , pp. 17-28
    • Clare, P.1    Bernhardt, M.2    Oxford, W.3    Murphy, S.4    Godfree, P.5    Wilkinson, V.6
  • 30
    • 27544479599 scopus 로고    scopus 로고
    • Statistical Characterization of Natural Hyperspectral Backgrounds Using t-Elliptically Contoured Distributions, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
    • Manolakis, D.; Rossacci, M.; Cipar, J.; Lockwood, R.; Cooley, T.; Jacobson, J. Statistical Characterization of Natural Hyperspectral Backgrounds Using t-Elliptically Contoured Distributions, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Proc. SPIE. 2005, 5806, 56-65.
    • (2005) Proc. SPIE , vol.5806 , pp. 56-65
    • Manolakis, D.1    Rossacci, M.2    Cipar, J.3    Lockwood, R.4    Cooley, T.5    Jacobson, J.6
  • 31
    • 27544504420 scopus 로고    scopus 로고
    • The Effects of Atmospheric Compensation Upon Gaseous Plume Signatures, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
    • Miller, B.; Messinger, D. The Effects of Atmospheric Compensation Upon Gaseous Plume Signatures, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Proc. SPIE. 2005, 5806, 229-236.
    • (2005) Proc. SPIE , vol.5806 , pp. 229-236
    • Miller, B.1    Messinger, D.2
  • 32
    • 2442516004 scopus 로고    scopus 로고
    • An In-scene Method for Atmospheric Compensation of Thermal Hyperspectral Data
    • Young, S.; Johnson, B.; Hackwell J. An In-scene Method for Atmospheric Compensation of Thermal Hyperspectral Data. J. Geophys. Res. Atm. 2002, 107, 4774-4774.
    • (2002) J. Geophys. Res. Atm , vol.107 , pp. 4774-4774
    • Young, S.1    Johnson, B.2    Hackwell, J.3
  • 34
    • 84876649710 scopus 로고    scopus 로고
    • Berk, A.; Bernstein, L.; Robertson, D. MODTRAN: A Moderate Resolution Model for LOWTRAN 7, GL-TR-890122,AD-A214-337, Geophysics Laboratory, Hamscom Air Force Base, Mass, 1989.
    • Berk, A.; Bernstein, L.; Robertson, D. MODTRAN: A Moderate Resolution Model for LOWTRAN 7, GL-TR-890122,AD-A214-337, Geophysics Laboratory, Hamscom Air Force Base, Mass, 1989.
  • 41
    • 84876642817 scopus 로고    scopus 로고
    • Burr, T.; Fry, H.; McVey, B.; Sander, E.; Cavenaugh, J.; Neath, A. Performance of Variable Selection Methods in Regression using Variations of the Bayesian Information Criterion, Los Alamos National Laboratory Unclassified Report LAUR-05-6324, submitted, 2005, available from T. Burr upon request.
    • Burr, T.; Fry, H.; McVey, B.; Sander, E.; Cavenaugh, J.; Neath, A. Performance of Variable Selection Methods in Regression using Variations of the Bayesian Information Criterion, Los Alamos National Laboratory Unclassified Report LAUR-05-6324, submitted, 2005, available from T. Burr upon request.
  • 44
    • 0028467206 scopus 로고
    • Hyperspectral Image Classification and Dimensionality Reduction: An Orthogonal Subspace Projection Approach
    • Harsanyi, J.; Chang, C. Hyperspectral Image Classification and Dimensionality Reduction: an Orthogonal Subspace Projection Approach. IEEE Trans. Geoscience and Remote Sensing. 1994, 32, 779-785.
    • (1994) IEEE Trans. Geoscience and Remote Sensing , vol.32 , pp. 779-785
    • Harsanyi, J.1    Chang, C.2
  • 45
    • 1642515695 scopus 로고    scopus 로고
    • Estimation of Trace Vapor Concentration-Pathlength in Plumes for Remote Sensing Applications From Hyperspectral Images
    • Gallagher, N.; Sheen, D.; Shaver, J.; Wise, B.; Shultz, J. Estimation of Trace Vapor Concentration-Pathlength in Plumes for Remote Sensing Applications From Hyperspectral Images. Proc. SPIE. 2003, 5093, 184-194.
    • (2003) Proc. SPIE , vol.5093 , pp. 184-194
    • Gallagher, N.1    Sheen, D.2    Shaver, J.3    Wise, B.4    Shultz, J.5
  • 46
    • 3543059899 scopus 로고    scopus 로고
    • Scene Analysis and Detection in Thermal Infrared Remote Sensing Using Independent Component Analysis
    • Foy, B.; Theiler, J. Scene Analysis and Detection in Thermal Infrared Remote Sensing Using Independent Component Analysis. Proc. SPIE. 2004, 5439, 131-139.
    • (2004) Proc. SPIE , vol.5439 , pp. 131-139
    • Foy, B.1    Theiler, J.2
  • 47
    • 85039227165 scopus 로고    scopus 로고
    • Adaptive Branch and Bound Algorithm for Use on Hyperspectral Data, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
    • Nakariyakul, S.; Casasent, D. Adaptive Branch and Bound Algorithm for Use on Hyperspectral Data, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Proc. SPIE. 2006, 6233, 175-184.
    • (2006) Proc. SPIE , vol.6233 , pp. 175-184
    • Nakariyakul, S.1    Casasent, D.2
  • 48
    • 85039218134 scopus 로고    scopus 로고
    • Feature Selection for Spectral Sensors with Overlapping Noising Spectral Bands, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI
    • Paskaleva, B.; Hayat, M.; Tyo, J.; Wang, Z.; Martinez, M. Feature Selection for Spectral Sensors with Overlapping Noising Spectral Bands, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Proc. SPIE. 2006, 6233, 773-782.
    • (2006) Proc. SPIE , vol.6233 , pp. 773-782
    • Paskaleva, B.1    Hayat, M.2    Tyo, J.3    Wang, Z.4    Martinez, M.5
  • 49
    • 27544476120 scopus 로고    scopus 로고
    • Griffin, M.; Czerwinski, R.; Upham, C.; Wack, E.; Burke, H. A Procedure for Embedding Effluent Plumes into LWIR Imagery, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Proc. SPIE. 2005, 5806, 78-87.
    • Griffin, M.; Czerwinski, R.; Upham, C.; Wack, E.; Burke, H. A Procedure for Embedding Effluent Plumes into LWIR Imagery, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Proc. SPIE. 2005, 5806, 78-87.
  • 52
    • 2442457666 scopus 로고    scopus 로고
    • The PNNL Quantitative Infrared DataBase for Gas-Phase Sensing: Spectral Library for Environmental, Hazmat, and Public Safety Standoff Detection, Chemical and Biological Point Sensors for Homeland Defense
    • Johnson, T.; Sams, R.; Sharpe, S. The PNNL Quantitative Infrared DataBase for Gas-Phase Sensing: Spectral Library for Environmental, Hazmat, and Public Safety Standoff Detection, Chemical and Biological Point Sensors for Homeland Defense. Proc. SPIE. 2004, 5269, 159-167.
    • (2004) Proc. SPIE , vol.5269 , pp. 159-167
    • Johnson, T.1    Sams, R.2    Sharpe, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.