메뉴 건너뛰기




Volumn 23, Issue 6, 2006, Pages

Modeling soft sensor based on support vector machine and particle swarm optimization algorithms

Author keywords

Feature subset; Particle swarm optimization algorithm; PTA (purified terephthalic acid) oxidation process; Soft sensor; Support vector machine

Indexed keywords

CARBOXYBENZALDCHYDC; FEATURE SUBSET; PARTICLE SWARM OPTIMIZATION ALGORITHM; PURIFIED TEREPHTHALIC ACID OXIDATION PROCESS; SOFT SENSOR;

EID: 33947278307     PISSN: 10008152     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (28)

References (13)
  • 1
    • 0242265282 scopus 로고    scopus 로고
    • Key problems and research program for PTA process domestic development
    • LI Xi, XIE Gang, HUA Weiqi. Key problems and research program for PTA process domestic development[J]. Polyester Industry, 2001, 40(1): 1-7.
    • (2001) Polyester Industry , vol.40 , Issue.1 , pp. 1-7
    • Li, X.1    Xie, G.2    Hua, W.3
  • 2
    • 26744462531 scopus 로고
    • Method and apparatus for controlling the manufacture of terephthalic acid to control the level and variability of the contaminant content and the optical density: US, 4835307
    • LINDAHL H A, ABRAMS K J, STARK L E, et al. Method and apparatus for controlling the manufacture of terephthalic acid to control the level and variability of the contaminant content and the optical density: US, 4835307[P]. 1989.
    • (1989)
    • Lindahl, H.A.1    Abrams, K.J.2    Stark, L.E.3
  • 3
    • 0028464487 scopus 로고
    • Kinetics of p-Xylene liqui-phase catalytic oxidation
    • CAP G, SERVIDA A, PISU M, et al. Kinetics of p-Xylene liqui-phase catalytic oxidation[J]. AIChE J, 1994, 40(6): 1156-1166.
    • (1994) AIChE J , vol.40 , Issue.6 , pp. 1156-1166
    • Cap, G.1    Servida, A.2    Pisu, M.3
  • 4
    • 3142570943 scopus 로고    scopus 로고
    • Fuzzy neural network model of 4-CBA concentration for industrial PTA oxidation process
    • LIU Ruilan, SU Hongye, MU Shengjing, et al. Fuzzy neural network model of 4-CBA concentration for industrial PTA oxidation process[J]. Chinese J of Chemical Engineering, 2004, 12(2): 234-239.
    • (2004) Chinese J of Chemical Engineering , vol.12 , Issue.2 , pp. 234-239
    • Liu, R.1    Su, H.2    Mu, S.3
  • 5
    • 3242800439 scopus 로고    scopus 로고
    • The research on soft sensor of the concentration of 4-CBA based on bayesian approach
    • CHEN Weiquan, LIU Ruilan, SU Hongye, et al. The research on soft sensor of the concentration of 4-CBA based on bayesian approach[J]. Control and Instruments in Chemical Industry, 2003, 30(5): 49-51.
    • (2003) Control and Instruments in Chemical Industry , vol.30 , Issue.5 , pp. 49-51
    • Chen, W.1    Liu, R.2    Su, H.3
  • 6
    • 1442270305 scopus 로고    scopus 로고
    • Studies on the kinetics of p-Xylene oxidation and the reactor simulation
    • Hangzhou: Zhejiang University
    • WANG Lijun. Studies on the kinetics of p-Xylene oxidation and the reactor simulation[D]. Hangzhou: Zhejiang University, 2001.
    • (2001)
    • Wang, L.1
  • 7
    • 33947211271 scopus 로고    scopus 로고
    • The studies of process modeling and optimization in petrochemical industry
    • Hangzhou: Zhejiang University
    • MU Shengjing. The studies of process modeling and optimization in petrochemical industry[D]. Hangzhou: Zhejiang University, 2004.
    • (2004)
    • Mu, S.1
  • 10
    • 34249753618 scopus 로고
    • Support vector networks
    • CORTES C, VAPNIK V. Support vector networks[J]. Machine Learning, 1995, 20(4): 273-297.
    • (1995) Machine Learning , vol.20 , Issue.4 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • GUYON I, WESTON J, BARNHILL S, et al. Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(6): 389-422.
    • (2002) Machine Learning , vol.46 , Issue.6 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 13
    • 0344291226 scopus 로고    scopus 로고
    • Recent approach to global optimization problems through particle swarm optimization
    • PARSOPOULOS K E, VRAHATIS M N. Recent approach to global optimization problems through particle swarm optimization[J]. Natural Computing, 2002, 1(2/3): 235-306.
    • (2002) Natural Computing , vol.1 , Issue.2-3 , pp. 235-306
    • Parsopoulos, K.E.1    Vrahatis, M.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.