-
1
-
-
0035389498
-
Positive periodic solutions for an integrodifferential model of mutualism
-
Li Y.K., and Xu G.T. Positive periodic solutions for an integrodifferential model of mutualism. Appl. Math. Lett. 14 (2001) 525-530
-
(2001)
Appl. Math. Lett.
, vol.14
, pp. 525-530
-
-
Li, Y.K.1
Xu, G.T.2
-
3
-
-
0021062523
-
A simple model of mutualism
-
Dean A.M. A simple model of mutualism. Am. Natural 121 (1983) 409-417
-
(1983)
Am. Natural
, vol.121
, pp. 409-417
-
-
Dean, A.M.1
-
5
-
-
33750433203
-
-
F.D. Chen, X.Y. Liao, Z.K. Huang, The dynamic behavior of N-species cooperation system with continuous time delays and feedback controls, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.02.007.
-
-
-
-
6
-
-
30244544956
-
Global asymptotic stability in n-species cooperative system with time delays
-
Cui J.A. Global asymptotic stability in n-species cooperative system with time delays. Syst. Sci. Math. Sci. 7 1 (1994) 45-48
-
(1994)
Syst. Sci. Math. Sci.
, vol.7
, Issue.1
, pp. 45-48
-
-
Cui, J.A.1
-
7
-
-
33646164082
-
Global asymptotic stability of periodic solution in n-species cooperative system with time delays
-
Yang P., and Xu R. Global asymptotic stability of periodic solution in n-species cooperative system with time delays. J. Biomath. 13 6 (1998) 841-846
-
(1998)
J. Biomath.
, vol.13
, Issue.6
, pp. 841-846
-
-
Yang, P.1
Xu, R.2
-
8
-
-
33646127071
-
Almost periodic solution for n-species cooperative system with time delay
-
Zhang X., and Wang K. Almost periodic solution for n-species cooperative system with time delay. J. Northeast Normal Univ. 34 3 (2002) 9-13
-
(2002)
J. Northeast Normal Univ.
, vol.34
, Issue.3
, pp. 9-13
-
-
Zhang, X.1
Wang, K.2
-
9
-
-
33947219313
-
-
F.Y. Wei, K. Wang, Asymptotically periodic solution of N-species cooperation system with time delay, Nonlinear Anal.: Real World Appl., in press.
-
-
-
-
10
-
-
7244224959
-
Average conditions for permanence and extinction in nonautonomous Lotka-Volterra system
-
Zhao J.D., and Jiang J.F. Average conditions for permanence and extinction in nonautonomous Lotka-Volterra system. J. Math. Anal. Appl. 299 (2004) 663-675
-
(2004)
J. Math. Anal. Appl.
, vol.299
, pp. 663-675
-
-
Zhao, J.D.1
Jiang, J.F.2
-
11
-
-
33646500146
-
Existence, uniqueness and stability of positive periodic solution for a nonlinear prey-competition model with delays
-
Chen F.D., Xie X.D., and Shi J.L. Existence, uniqueness and stability of positive periodic solution for a nonlinear prey-competition model with delays. J. Comput. Appl. Math. 194 2 (2006) 368-387
-
(2006)
J. Comput. Appl. Math.
, vol.194
, Issue.2
, pp. 368-387
-
-
Chen, F.D.1
Xie, X.D.2
Shi, J.L.3
-
12
-
-
33947242284
-
-
F.D. Chen, Some new results on the permanence and extinction of nonautonomous Gilpin-Ayala type competition model with delays, Nonlinear Anal.: Real World Appl., in press.
-
-
-
-
13
-
-
33744973381
-
Competitive exclusion in a periodic Lotka-Volterra system
-
Lisena B. Competitive exclusion in a periodic Lotka-Volterra system. Appl. Math. Comput. 177 2 (2006) 761-768
-
(2006)
Appl. Math. Comput.
, vol.177
, Issue.2
, pp. 761-768
-
-
Lisena, B.1
-
14
-
-
10344241994
-
Boundedness and partial survival of species in nonautonomous Lotka-Volterra systems
-
Muroya Y. Boundedness and partial survival of species in nonautonomous Lotka-Volterra systems. Nonlinear Anal.: Real World Appl. 6 2 (2005) 263-272
-
(2005)
Nonlinear Anal.: Real World Appl.
, vol.6
, Issue.2
, pp. 263-272
-
-
Muroya, Y.1
-
15
-
-
33947215439
-
-
Francisco Montes de Oca and Miguel Vivas, Extinction in a two dimensional Lotka-Volterra system with infinite delay, Nonlinear Anal.: Real World Appl., in press.
-
-
-
-
16
-
-
84972502093
-
Asymptotic behavior of positive solutions of the nonautonomous Lotka-Volterra competition equations
-
Tineo A. Asymptotic behavior of positive solutions of the nonautonomous Lotka-Volterra competition equations. Differen. Integral Equat. 6 (1993) 419-457
-
(1993)
Differen. Integral Equat.
, vol.6
, pp. 419-457
-
-
Tineo, A.1
-
17
-
-
84990581010
-
Differential equation models of some parasitic infection-methods for the study of asymptotic behavior
-
Hirsch W., Hanisch H., and Gabriel J. Differential equation models of some parasitic infection-methods for the study of asymptotic behavior. Comm. Pure Appl. Math. 38 (1985) 733-753
-
(1985)
Comm. Pure Appl. Math.
, vol.38
, pp. 733-753
-
-
Hirsch, W.1
Hanisch, H.2
Gabriel, J.3
-
18
-
-
33646130419
-
Average conditions for permanence and extinction in nonautonomous Gilpin-Ayala competition model
-
Chen F.D. Average conditions for permanence and extinction in nonautonomous Gilpin-Ayala competition model. Nonlinear Anal.: Real World Appl. 7 4 (2006) 895-915
-
(2006)
Nonlinear Anal.: Real World Appl.
, vol.7
, Issue.4
, pp. 895-915
-
-
Chen, F.D.1
-
19
-
-
1442280663
-
Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments
-
Fan M., Wong P.J.Y., and Agarwal R.P. Periodicity and stability in periodic n-species Lotka-Volterra competition system with feedback controls and deviating arguments. Acta Math. Sinica 19 4 (2003) 801-822
-
(2003)
Acta Math. Sinica
, vol.19
, Issue.4
, pp. 801-822
-
-
Fan, M.1
Wong, P.J.Y.2
Agarwal, R.P.3
-
20
-
-
28144453816
-
Positive periodic solutions of a class of non-autonomous single species population model with delays and feedback control
-
Chen F.D., Chen X.X., Chen A.P., and Cao J.D. Positive periodic solutions of a class of non-autonomous single species population model with delays and feedback control. Acta Math. Sinica 21 6 (2005) 1319-1336
-
(2005)
Acta Math. Sinica
, vol.21
, Issue.6
, pp. 1319-1336
-
-
Chen, F.D.1
Chen, X.X.2
Chen, A.P.3
Cao, J.D.4
-
21
-
-
18644369681
-
Existence and global attractivity of positive periodic solutions of functional differential equations with feedback control
-
Li W.T., and Wang L.L. Existence and global attractivity of positive periodic solutions of functional differential equations with feedback control. J. Comput Appl. Math. 180 2 (2005) 293-309
-
(2005)
J. Comput Appl. Math.
, vol.180
, Issue.2
, pp. 293-309
-
-
Li, W.T.1
Wang, L.L.2
-
22
-
-
27144498594
-
Global asymptotic stability in n-species nonautonomous Lotka-Volterra competitive systems with infinite delays and feedback control
-
Chen F.D. Global asymptotic stability in n-species nonautonomous Lotka-Volterra competitive systems with infinite delays and feedback control. Appl. Math. Comput. 170 2 (2005) 1452-1468
-
(2005)
Appl. Math. Comput.
, vol.170
, Issue.2
, pp. 1452-1468
-
-
Chen, F.D.1
-
23
-
-
24944476496
-
The permanence and global attractivity of Lotka-Volterra competition system with feedback controls
-
Chen F.D. The permanence and global attractivity of Lotka-Volterra competition system with feedback controls. Nonlinear Anal.: Real World Appl. 7 1 (2006) 133-143
-
(2006)
Nonlinear Anal.: Real World Appl.
, vol.7
, Issue.1
, pp. 133-143
-
-
Chen, F.D.1
-
24
-
-
4544258197
-
Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control
-
Chen F.D., Lin F.X., and Chen X.X. Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control. Appl. Math. Comput. 158 1 (2004) 45-68
-
(2004)
Appl. Math. Comput.
, vol.158
, Issue.1
, pp. 45-68
-
-
Chen, F.D.1
Lin, F.X.2
Chen, X.X.3
-
25
-
-
12244274373
-
Positive periodic solutions of neutral Lotka-Volterra system with feedback control
-
Chen F.D. Positive periodic solutions of neutral Lotka-Volterra system with feedback control. Appl. Math. Comput. 162 3 (2005) 1279-1302
-
(2005)
Appl. Math. Comput.
, vol.162
, Issue.3
, pp. 1279-1302
-
-
Chen, F.D.1
-
26
-
-
17644427702
-
On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay
-
Chen F.D. On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay. J. Comput. Appl. Math. 180 1 (2005) 33-49
-
(2005)
J. Comput. Appl. Math.
, vol.180
, Issue.1
, pp. 33-49
-
-
Chen, F.D.1
-
27
-
-
33947247405
-
-
F.D. Chen, Z. Li, Y.J. Huang, Note on the permanence of a competitive system with infinite delay and feedback controls, Nonlinear Anal.: Real World Appl., in press.
-
-
-
|