-
1
-
-
13544262350
-
Performance of the Taylor series method for ODEs/DAEs
-
R. Barrio, Performance of the Taylor series method for ODEs/DAEs, Appl. Math. Comput., 163 (2005), pp. 525-545.
-
(2005)
Appl. Math. Comput
, vol.163
, pp. 525-545
-
-
Barrio, R.1
-
2
-
-
0030168036
-
ADOL-C, a package for the automatic differentiation of algorithms written in C/C++, ACM Trans
-
A. Griewank, D. Juedes, and J. Utke, ADOL-C, a package for the automatic differentiation of algorithms written in C/C++, ACM Trans. Math. Softw., 22 (1996), pp. 131-167.
-
(1996)
Math. Softw
, vol.22
, pp. 131-167
-
-
Griewank, A.1
Juedes, D.2
Utke, J.3
-
4
-
-
33745318870
-
-
A. Griewank and A. Walther, On the efficient generation of Taylor expansions for DAB solutions by automatic differentiation, in PARA'04, State-of-the-art in Scientific Computing, J. Dongarra, K. Madsen, and J. Wasniewski (eds.), in Lect. Notes Comput. Sci., 3732, pp. 1103-1111. Springer, 2006.
-
A. Griewank and A. Walther, On the efficient generation of Taylor expansions for DAB solutions by automatic differentiation, in PARA'04, State-of-the-art in Scientific Computing, J. Dongarra, K. Madsen, and J. Wasniewski (eds.), in Lect. Notes Comput. Sci., vol. 3732, pp. 1103-1111. Springer, 2006.
-
-
-
-
5
-
-
0003798992
-
-
PhD thesis, Department of Mathematics and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, August
-
J. Hoefkens, Rigorous Numerical Analysis with High-Order Taylor Models, PhD thesis, Department of Mathematics and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, August 2001.
-
(2001)
Rigorous Numerical Analysis with High-Order Taylor Models
-
-
Hoefkens, J.1
-
6
-
-
0012732864
-
Automatic programming of recurrent power series
-
M. Lara, A. Elipe, and M. Palacios, Automatic programming of recurrent power series, Math. Comput. Simul., 49 (1999), pp. 351-362.
-
(1999)
Math. Comput. Simul
, vol.49
, pp. 351-362
-
-
Lara, M.1
Elipe, A.2
Palacios, M.3
-
7
-
-
28144454918
-
Solving differential-algebraic equations by Taylor series (I): Computing Taylor coefficients
-
N. S. Nedialkov and J. D. Pryce, Solving differential-algebraic equations by Taylor series (I): Computing Taylor coefficients, BIT, 45 (2005), pp. 561-591.
-
(2005)
BIT
, vol.45
, pp. 561-591
-
-
Nedialkov, N.S.1
Pryce, J.D.2
-
8
-
-
0000353268
-
The consistent initialization of differential-algebraic systems
-
C. C. Pantelides, The consistent initialization of differential-algebraic systems, SIAM. J. Sci. Stat. Comput., 9 (1988), pp. 213-231.
-
(1988)
SIAM. J. Sci. Stat. Comput
, vol.9
, pp. 213-231
-
-
Pantelides, C.C.1
-
9
-
-
0032262788
-
Solving high-index DAEs by Taylor series
-
J. D. Pryce, Solving high-index DAEs by Taylor series, Numer. Algorithms, 19 (1998), pp. 195-211.
-
(1998)
Numer. Algorithms
, vol.19
, pp. 195-211
-
-
Pryce, J.D.1
-
10
-
-
0041331524
-
A simple structural analysis method for DAEs
-
J. D. Pryce, A simple structural analysis method for DAEs, BIT, 41 (2001), pp. 364-394.
-
(2001)
BIT
, vol.41
, pp. 364-394
-
-
Pryce, J.D.1
-
11
-
-
17744370292
-
Differential-algebraic equations of index 1 may have an arbitrarily high structural index
-
G. Reissig, W. S. Martinson, and P. I. Barton, Differential-algebraic equations of index 1 may have an arbitrarily high structural index, SIAM J. Sci. Comput., 21 (2000), pp. 1987-1990.
-
(2000)
SIAM J. Sci. Comput
, vol.21
, pp. 1987-1990
-
-
Reissig, G.1
Martinson, W.S.2
Barton, P.I.3
-
12
-
-
33947197515
-
-
O. Stauning and C. Bendtsen, FADBAD++ web page, May 2003. FADBAD++ is available at www.imm.dtu.dk/fadbad.html.
-
O. Stauning and C. Bendtsen, FADBAD++ web page, May 2003. FADBAD++ is available at www.imm.dtu.dk/fadbad.html.
-
-
-
|