메뉴 건너뛰기




Volumn 20, Issue 3, 2007, Pages 249-254

An empirical study of three machine learning methods for spam filtering

Author keywords

Machine learning; Spam filtering

Indexed keywords

ELECTRONIC MAIL; INTERNET; KNOWLEDGE REPRESENTATION;

EID: 33947200129     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2006.05.016     Document Type: Article
Times cited : (68)

References (16)
  • 1
    • 33947245793 scopus 로고    scopus 로고
    • Aladdin Knowledge Systems, Anti-spam white paper, .
  • 2
    • 33947258712 scopus 로고    scopus 로고
    • I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras, C.D. Spyropoulos, An evaluation of naive bayesian anti-spam filtering, in: Proc. of the Workshop on Machine Learning in the New Information Age: 11th European Conference on Machine Learning, 2000, pp. 9-17.
  • 3
    • 0033651407 scopus 로고    scopus 로고
    • I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras, C.D. Spyropoulos, An experimental comparison of naive bayesian and keyword-based anti-spam filtering with encrypted personal e-mail messages, in: Proc. of the 23rd Annual International ACM SIGIR Conf. on Research and Development in Information Retrieval, 2000, pp. 160-167.
  • 4
    • 33947283526 scopus 로고    scopus 로고
    • I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C.D. Spyropoulos, P. Stamatopoulos, Learning to filter spam e-mail: a comparison of a Naïve Bayesian and a memory-based approach, in: Proc. of the workshop: Machine Learning and Textual Information Access, 2000, pp. 1-13.
  • 5
    • 33947212155 scopus 로고    scopus 로고
    • X. Carreras, L. Márquez, Boosting trees for anti-spam email filtering, in: Proc. of fourth Int'l Conf. on Recent Advances in Natural Language Processing, 2001, pp. 58-64.
  • 6
    • 33947258711 scopus 로고    scopus 로고
    • W.W. Cohen, Learning rules that classify e-mail, in: Proc. of AAAI Spring Symposium on Machine Learning in Information Access, 1996, pp. 18-25.
  • 7
    • 0032594950 scopus 로고    scopus 로고
    • Support vector machines for spam categorization
    • Drucker H., Wu D., and Vapnik V.N. Support vector machines for spam categorization. IEEE Trans. Neural Netw. Vol. 10 No. 5 (1999) 1048-1054
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.5 , pp. 1048-1054
    • Drucker, H.1    Wu, D.2    Vapnik, V.N.3
  • 8
    • 33947250507 scopus 로고    scopus 로고
    • A. Kołcz, J. Alspector, SVM-based filtering of e-mail spam with content-specific misclassification costs, in: Proc. of TextDM'01 Workshop on Text Mining, 2001.
  • 9
    • 33947270135 scopus 로고    scopus 로고
    • M. Sahami, S. Dumais, D. Heckerman, E. Horvitz, A Bayesian approach to filtering junk e-mail, in: Learning for Text Categorization - Papers from the AAAI Workshop, 1998, pp. 55-62.
  • 10
    • 33947246861 scopus 로고    scopus 로고
    • G. Sakkis, I. Androutsopoulos, G. Paliouras, V. Karkaletsis, C.D. Spyropoulos, P. Stamatopoulos, Stacking classifiers for anti-spam filtering of e-mail, in: Proc. of the 6th Conf. on Empirical Methods in Natural Language Processing, 2001, pp. 44-50.
  • 11
    • 33947209285 scopus 로고    scopus 로고
    • R. Segal, J. Crawford, J. Kephart, B. Leiba, Spamguru: an enterprise anti-spam filtering system, in: Proc. of First Conf. on Email and Anti-Spam, 2004.
  • 12
    • 33947266266 scopus 로고    scopus 로고
    • F. Smadja, H. Tumblin, Automatic spam detection as a text classification task, in: Proc. of Workshop on Operational Text Classification Systems, 2002.
  • 13
    • 35048871192 scopus 로고    scopus 로고
    • D.C. Trudgian, Z.R. Yang, Spam classification using nearest neighbour techniques, in: Proc. of Fifth International Conf. on Intelligent Data Engineering and Automated Learning, 2004, pp. 578-585.
  • 15
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Yang Y. An evaluation of statistical approaches to text categorization. J. Inform. Retrieval vol. 1 (1999) 67-88
    • (1999) J. Inform. Retrieval , vol.1 , pp. 67-88
    • Yang, Y.1
  • 16
    • 84943389252 scopus 로고    scopus 로고
    • M. Woitaszek, M. Shaaban, R. Czernikowski, Identifying junk electronic mail in microsoft outlook with a support vector machine, in: Proc. of the 2003 Symposium on Applications and the Internet, 2003, pp. 166-169.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.