-
1
-
-
0041733582
-
Nearly orthogonal two-dimensional grid generation with aspect ratio control
-
Akcelik V., Jaramaz B., and Ghattas O. Nearly orthogonal two-dimensional grid generation with aspect ratio control. J. Comput. Phys. 171 (2001) 805-821
-
(2001)
J. Comput. Phys.
, vol.171
, pp. 805-821
-
-
Akcelik, V.1
Jaramaz, B.2
Ghattas, O.3
-
2
-
-
14644440890
-
Adaptive grid generation based on least-squares finite element method
-
Cai X., Jiang B., and Liao G. Adaptive grid generation based on least-squares finite element method. Computers Math. Applic. 48 (2004) 1077-1085
-
(2004)
Computers Math. Applic.
, vol.48
, pp. 1077-1085
-
-
Cai, X.1
Jiang, B.2
Liao, G.3
-
3
-
-
0036132767
-
Steady state diffusion problems on non-trivial domains: support operator method integrated with direct optimized grid generation
-
Castillo J., and McGuinness T. Steady state diffusion problems on non-trivial domains: support operator method integrated with direct optimized grid generation. Appl. Numer. Math. 40 (2002) 207-218
-
(2002)
Appl. Numer. Math.
, vol.40
, pp. 207-218
-
-
Castillo, J.1
McGuinness, T.2
-
4
-
-
25444469411
-
Conservative space-time mesh refinement methods for the FDTD solution of Maxwell's equations
-
Collino F., Fouquet T., and Joly P. Conservative space-time mesh refinement methods for the FDTD solution of Maxwell's equations. J. Comput. Phys. 211 (2006) 9-35
-
(2006)
J. Comput. Phys.
, vol.211
, pp. 9-35
-
-
Collino, F.1
Fouquet, T.2
Joly, P.3
-
6
-
-
0030138498
-
2D orthogonal grid generation with boundary point distribution control
-
Eca L. 2D orthogonal grid generation with boundary point distribution control. J. Comput. Phys. 125 (1996) 440-453
-
(1996)
J. Comput. Phys.
, vol.125
, pp. 440-453
-
-
Eca, L.1
-
7
-
-
0042156834
-
New boundary constraints for elliptic systems used in grid generation problems
-
Kaul U.K. New boundary constraints for elliptic systems used in grid generation problems. J. Comput. phys. 189 (2003) 476-492
-
(2003)
J. Comput. phys.
, vol.189
, pp. 476-492
-
-
Kaul, U.K.1
-
8
-
-
0034889366
-
Quasi-orthogonal grids with impedance matching
-
Khamayseh A., and Hansen G. Quasi-orthogonal grids with impedance matching. SIAM J. Sci. Comput. 22 (2000) 1220-1237
-
(2000)
SIAM J. Sci. Comput.
, vol.22
, pp. 1220-1237
-
-
Khamayseh, A.1
Hansen, G.2
-
10
-
-
0034505846
-
A framework for variational grid generation: conditioning the Jacobian matrix with matrix norms
-
Knupp P.M., and Robidoux N. A framework for variational grid generation: conditioning the Jacobian matrix with matrix norms. SIAM J. Sci. Comput. 21 (2000) 2029-2047
-
(2000)
SIAM J. Sci. Comput.
, vol.21
, pp. 2029-2047
-
-
Knupp, P.M.1
Robidoux, N.2
-
11
-
-
7544229452
-
The enhancement of an elliptic grid using appropriate control functions
-
Lee S.H., and Soni B.K. The enhancement of an elliptic grid using appropriate control functions. Appl. Math. Comput. 159 (2004) 809-821
-
(2004)
Appl. Math. Comput.
, vol.159
, pp. 809-821
-
-
Lee, S.H.1
Soni, B.K.2
-
13
-
-
19644367326
-
Acoustic scattering from complex geometries
-
AIAA (Ed), AIAA
-
Manoha E., Guenanff R., Redonnet S., and Terracol M. Acoustic scattering from complex geometries. In: AIAA (Ed). 10th AIAA/CEAS Aeroacoustics Conference (2004), AIAA 1551-1553
-
(2004)
10th AIAA/CEAS Aeroacoustics Conference
, pp. 1551-1553
-
-
Manoha, E.1
Guenanff, R.2
Redonnet, S.3
Terracol, M.4
-
14
-
-
4544387945
-
Numerical simulations for the contraction flow using grid generation
-
Salem S.A. Numerical simulations for the contraction flow using grid generation. J. Appl. Math. Comput. 16 (2004) 383-405
-
(2004)
J. Appl. Math. Comput.
, vol.16
, pp. 383-405
-
-
Salem, S.A.1
-
15
-
-
0013415669
-
Elliptic grid generation based on Laplace equations an algebraic transformations
-
Spekreijse S.P. Elliptic grid generation based on Laplace equations an algebraic transformations. J. Comput Phys. 118 (1995) 38-61
-
(1995)
J. Comput Phys.
, vol.118
, pp. 38-61
-
-
Spekreijse, S.P.1
-
17
-
-
0019028641
-
Direct control of grid point distribution in meshes generated by elliptic equation
-
Thomas P.D., and Middlecoff J.F. Direct control of grid point distribution in meshes generated by elliptic equation. AIAA J. 18 (1980) 652-656
-
(1980)
AIAA J.
, vol.18
, pp. 652-656
-
-
Thomas, P.D.1
Middlecoff, J.F.2
-
18
-
-
0022797527
-
A general three-dimensional elliptic grid generation system on a composite block structure
-
Thompson J.F. A general three-dimensional elliptic grid generation system on a composite block structure. Comput. Meth. Appl. Mech. Eng. 64 (1987) 377-411
-
(1987)
Comput. Meth. Appl. Mech. Eng.
, vol.64
, pp. 377-411
-
-
Thompson, J.F.1
-
20
-
-
0037139616
-
Time-dependent numerical method with boundary-conforming curvilinear coordinates applied to wave interactions with prototypical antennas
-
Villamizar V., and Rojas O. Time-dependent numerical method with boundary-conforming curvilinear coordinates applied to wave interactions with prototypical antennas. J. Comput Phys. 177 (2002) 1-36
-
(2002)
J. Comput Phys.
, vol.177
, pp. 1-36
-
-
Villamizar, V.1
Rojas, O.2
-
21
-
-
85190571723
-
-
V. Villamizar, M. Weber, Scattering cross section of non-smooth cylindrical obstacles of arbitrary shape, in: H. Haddar, J.H. Hesthaven, (Eds.), in: Proceedings of the 7th International Conference on Mathematical and Numerical Aspects of Wave Propagation, Waves 2005, pp. 167-169, Rhode Island, 2005.
-
-
-
-
22
-
-
0036743716
-
On the use of higher-order finite difference schemes on curvilinear and deforming meshes
-
Visbal M.R., and Gaitonde D.V. On the use of higher-order finite difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181 (2002) 155-185
-
(2002)
J. Comput. Phys.
, vol.181
, pp. 155-185
-
-
Visbal, M.R.1
Gaitonde, D.V.2
-
23
-
-
4544337390
-
Non-self overlapping hermite interpolation mapping: a practical solution for structured quadrilateral meshing
-
Wang C.L., and Tang K. Non-self overlapping hermite interpolation mapping: a practical solution for structured quadrilateral meshing. Comput. Aided Des. 37 (2005) 271-283
-
(2005)
Comput. Aided Des.
, vol.37
, pp. 271-283
-
-
Wang, C.L.1
Tang, K.2
|