-
1
-
-
9444280557
-
Classification trees for problems with monotonicity constraints
-
R. Potharst and A. Feelders, “Classification trees for problems with monotonicity constraints,” SIGKDD Explorations Newsletter, vol. 4, no. 1, 2002.
-
(2002)
SIGKDD Explorations Newsletter
, vol.4
, Issue.1
-
-
Potharst, R.1
Feelders, A.2
-
2
-
-
0033240930
-
Application of MLP networks to bond rating and house pricing
-
H. A. M. Daniels and B. Kamp, “Application of MLP networks to bond rating and house pricing,” Neural Computation and Applications, vol. 8, pp. 226–234, 1999.
-
(1999)
Neural Computation and Applications
, vol.8
, pp. 226-234
-
-
Daniels, H.A.M.1
Kamp, B.2
-
3
-
-
0001064620
-
A neural network method of density estimation for univariate unimodal data
-
S. Wang, “A neural network method of density estimation for univariate unimodal data,” Neural Computation and Applications, vol. 2, pp. 160-167,1994.
-
(1994)
Neural Computation and Applications
, vol.2
, pp. 160-167
-
-
Wang, S.1
-
4
-
-
0030699631
-
Preserving monotonic shape of the data by using piecewise rational cubic functions
-
M. Sarfraz, M. Al-Mulhem, and F. Ashraf, “Preserving monotonic shape of the data by using piecewise rational cubic functions,” Comput. Graphics, vol. 21, no. 1,pp. 5–14, 1997.
-
(1997)
Comput. Graphics
, vol.21
, Issue.1
, pp. 5-14
-
-
Sarfraz, M.1
Al-Mulhem, M.2
Ashraf, F.3
-
5
-
-
0010910030
-
Monotonicity maintenance in information-theoretic machine learning algorithms
-
A. Ben-David, “Monotonicity maintenance in information-theoretic machine learning algorithms,” Machine Learning, vol. 19, pp. 29-43, 1995.
-
(1995)
Machine Learning
, vol.19
, pp. 29-43
-
-
Ben-David, A.1
-
6
-
-
34250754709
-
Monotone Decision Trees and Noisy Data
-
Rotterdam, The Netherlands, ERIM Internal Rep. 206
-
J. C. Bioch and V. Popova, “Monotone Decision Trees and Noisy Data,” Erasmus University Rotterdam, Rotterdam, The Netherlands, ERIM Internal Rep. 206, 2002.
-
(2002)
Erasmus University Rotterdam
-
-
Bioch, J.C.1
Popova, V.2
-
7
-
-
0033312334
-
Data analysis by positive decision trees
-
K. Makino, T. Suda, H. Ono, and T. Ibaraki, “Data analysis by positive decision trees,” IEICE Trans. Inf. Syst., vol. E82-D, no. 1, pp. 76–88, 1999.
-
(1999)
IEICE Trans. Inf. Syst.
, vol.E82-D
, Issue.1
, pp. 76-88
-
-
Makino, K.1
Suda, T.2
Ono, H.3
Ibaraki, T.4
-
8
-
-
25544460733
-
Classification Using Decision Trees and Neural Nets
-
Erasmus University Rotterdam, Rotterdam, The Netherlands
-
R. Potharst, “Classification Using Decision Trees and Neural Nets,” Ph.D. Dissertation, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1999.
-
(1999)
Ph.D. Dissertation
-
-
Potharst, R.1
-
9
-
-
33751361479
-
Derivation of Monotone Decision Models from Non-Monotone Data
-
Tilburg University, Tilburg, The Netherlands, Center Internal Rep. 2003–30
-
H. A. M. Daniels and M. Velikova, “Derivation of Monotone Decision Models from Non-Monotone Data,” Tilburg University, Tilburg, The Netherlands, Center Internal Rep. 2003–30, 2003.
-
(2003)
-
-
Daniels, H.A.M.1
Velikova, M.2
-
11
-
-
0036039104
-
Monotonicity testing over general poset domains
-
E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky, “Monotonicity testing over general poset domains,” in Proc. 34th Ann. ACM Symp. Theory of Computing, 2002, pp. 474-483.
-
(2002)
Proc. 34th Ann. ACM Symp. Theory of Computing
, pp. 474-483
-
-
Fischer, E.1
Lehman, E.2
Newman, I.3
Raskhodnikova, S.4
Rubinfeld, R.5
Samorodnitsky, A.6
-
13
-
-
9444279208
-
UCI Repository of Machine Learning Databases
-
Univ. of California, Irvine
-
C. L. Blake and C. J. Merz, “UCI Repository of Machine Learning Databases,” Dept. Inform. Comput. Sci., Univ. of California, Irvine, 1998.
-
(1998)
Dept. Inform. Comput. Sci.
-
-
Blake, C.L.1
Merz, C.J.2
-
14
-
-
0003802343
-
-
Belmont, CA: Wadsworth
-
L. Breiman, J. H. Friedman, R. A. Olshen, and C. T. Stone, Classification and Regression Trees. Belmont, CA: Wadsworth, 1984.
-
(1984)
Classification and Regression Trees.
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.T.4
|