-
2
-
-
33846039901
-
Locally optimal designs for estimating parameters
-
H. Chernoff (1953). Locally optimal designs for estimating parameters. The Annals of Mathematical Statistics, 24, 586-602.
-
(1953)
The Annals of Mathematical Statistics
, vol.24
, pp. 586-602
-
-
Chernoff, H.1
-
3
-
-
0002487793
-
Designing experiments with respect to standardized optimality criteria
-
H. Dette (1997). Designing experiments with respect to standardized optimality criteria. Journal of the Royal Statistical Society Series B, 59, No. 1, 97-110.
-
(1997)
Journal of the Royal Statistical Society Series B
, vol.59
, Issue.1
, pp. 97-110
-
-
Dette, H.1
-
5
-
-
33847734095
-
Maximin and Bayesian optimal designs for linear and nonlinear regression models
-
in press
-
H. Dette, L. Haines & L. Imhof (2006). Maximin and Bayesian optimal designs for linear and nonlinear regression models. Statistica Sinica, in press.
-
(2006)
Statistica Sinica
-
-
Dette, H.1
Haines, L.2
Imhof, L.3
-
6
-
-
0030350546
-
Optimal Bayesian designs for models with partially specified heteroscedastic structure
-
H. Dette & W. K. Wong (1996). Optimal Bayesian designs for models with partially specified heteroscedastic structure. The Annals of Statistics, 24, 2108-2127.
-
(1996)
The Annals of Statistics
, vol.24
, pp. 2108-2127
-
-
Dette, H.1
Wong, W.K.2
-
7
-
-
0042916303
-
A minimax algorithm for constructing optimal symmetrical balanced designs for a logistic regression model
-
R. Fandom Noubiap & W. Seidel (2000). A minimax algorithm for constructing optimal symmetrical balanced designs for a logistic regression model. Journal of Statistical Planning and Inference, 91, 151-168.
-
(2000)
Journal of Statistical Planning and Inference
, vol.91
, pp. 151-168
-
-
Fandom Noubiap, R.1
Seidel, W.2
-
8
-
-
33746028780
-
Locally D-optimal designs for multistage models and heteroscedastic polynomial regression models
-
Z. Fang, D. P. Wiens & Z. Wu (2006). Locally D-optimal designs for multistage models and heteroscedastic polynomial regression models. Journal of Statistical Planning and Inference, 136, 4059-4070.
-
(2006)
Journal of Statistical Planning and Inference
, vol.136
, pp. 4059-4070
-
-
Fang, Z.1
Wiens, D.P.2
Wu, Z.3
-
9
-
-
0000251072
-
The use of a canonical form in the construction of locally optimal designs for non-linear problems
-
I. Ford, B. Torsney & C. F. J. Wu (1992). The use of a canonical form in the construction of locally optimal designs for non-linear problems. Journal of the Royal Statistical Society Series B, 54, 569-583.
-
(1992)
Journal of the Royal Statistical Society Series B
, vol.54
, pp. 569-583
-
-
Ford, I.1
Torsney, B.2
Wu, C.F.J.3
-
10
-
-
0033635020
-
Minimax D-optimal designs for the logistic model
-
J. King & W. K. Wong (2000). Minimax D-optimal designs for the logistic model. Biometrics, 56, 1263-1267.
-
(2000)
Biometrics
, vol.56
, pp. 1263-1267
-
-
King, J.1
Wong, W.K.2
-
12
-
-
25044439911
-
A comparative study of MV- and SMV-optimal designs for binary response models
-
N. Balakrishnan, ed, Birkhäuser, Boston, pp
-
J. López-Fidalgo & W. K. Wong (2000). A comparative study of MV- and SMV-optimal designs for binary response models. In Advances in Stochastic Simulation Methods (N. Balakrishnan, ed.), Birkhäuser, Boston, pp. 135-151.
-
(2000)
Advances in Stochastic Simulation Methods
, pp. 135-151
-
-
López-Fidalgo, J.1
Wong, W.K.2
-
13
-
-
0010911410
-
Maximin efficient designs for estimating nonlinear aspects in linear models
-
C. H. Müller (1995). Maximin efficient designs for estimating nonlinear aspects in linear models. Journal of Statistical Planning and Inference, 44, 117-132.
-
(1995)
Journal of Statistical Planning and Inference
, vol.44
, pp. 117-132
-
-
Müller, C.H.1
-
15
-
-
0030929930
-
A sequential design for psychophysical experiments: An application to estimating timing of sensory events
-
W. F. Rosenberger & S. E. Grill (1997). A sequential design for psychophysical experiments: an application to estimating timing of sensory events. Statistics in Medicine, 16, 2245-2260.
-
(1997)
Statistics in Medicine
, vol.16
, pp. 2245-2260
-
-
Rosenberger, W.F.1
Grill, S.E.2
-
17
-
-
0027087158
-
Robust designs for binary data
-
R. R. Sitter (1992). Robust designs for binary data. Biometrics, 48, 1145-1155.
-
(1992)
Biometrics
, vol.48
, pp. 1145-1155
-
-
Sitter, R.R.1
-
18
-
-
0001506741
-
Optimal designs for binary response experiments: Fieller-, D- and A-criteria
-
R. R. Sitter & C. F. J. Wu (1993). Optimal designs for binary response experiments: Fieller-, D- and A-criteria. Scandinavian Journal of Statistics, 20, 329-341.
-
(1993)
Scandinavian Journal of Statistics
, vol.20
, pp. 329-341
-
-
Sitter, R.R.1
Wu, C.F.J.2
-
20
-
-
0002912952
-
Optimal design for percentile estimation of a quantal response curve
-
Y. Dodge, V. V. Fedorov & H. P. Wynn, eds, Elsevier/North Holland, Amsterdam, pp
-
C. F. J. Wu (1988). Optimal design for percentile estimation of a quantal response curve. In Optimal Design and Analysis of Experiments (Y. Dodge, V. V. Fedorov & H. P. Wynn, eds.), Elsevier/North Holland, Amsterdam, pp. 213-223.
-
(1988)
Optimal Design and Analysis of Experiments
, pp. 213-223
-
-
Wu, C.F.J.1
-
22
-
-
0034001945
-
Multiple-objective designs in a dose-response experiment
-
W. Zhu & W. K. Wong (2000). Multiple-objective designs in a dose-response experiment. Journal of Biopharmaceutical Statistics, 10, No. 1, 1-14.
-
(2000)
Journal of Biopharmaceutical Statistics
, vol.10
, Issue.1
, pp. 1-14
-
-
Zhu, W.1
Wong, W.K.2
-
23
-
-
0035863062
-
Bayesian optimal designs for estimating a set of symmetric quantiles
-
W. Zhu & W. K. Wong (2001). Bayesian optimal designs for estimating a set of symmetric quantiles. Statistics in Medicine, 20, 123-137.
-
(2001)
Statistics in Medicine
, vol.20
, pp. 123-137
-
-
Zhu, W.1
Wong, W.K.2
|