-
2
-
-
0037381038
-
Support vector machines experts for time series forecasting
-
Cao L. Support vector machines experts for time series forecasting. Neurocomputing 51 (2003) 321-339
-
(2003)
Neurocomputing
, vol.51
, pp. 321-339
-
-
Cao, L.1
-
3
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V., and Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks 17 (2004) 687-693
-
(2004)
Neural Networks
, vol.17
, pp. 687-693
-
-
Cherkassky, V.1
Ma, Y.2
-
5
-
-
0242552145
-
-
A.L.V. Coelho, C.A.M. Lima, F.J. Von Zuben, Hybrid genetic training of gated mixtures of experts for nonlinear time series forecasting, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Washington, DC, 2003, pp. 4625-4630.
-
-
-
-
6
-
-
0036583160
-
A parallel mixture of SVMs for very large scale problems
-
Collobert R., Bengio S., and Bengio Y. A parallel mixture of SVMs for very large scale problems. Neural Computation 14 (2002) 1105-1114
-
(2002)
Neural Computation
, vol.14
, pp. 1105-1114
-
-
Collobert, R.1
Bengio, S.2
Bengio, Y.3
-
7
-
-
34249753618
-
Support-vector networks
-
Cortes C., and Vapnik V. Support-vector networks. Machine Learning 20 (1995) 207-273
-
(1995)
Machine Learning
, vol.20
, pp. 207-273
-
-
Cortes, C.1
Vapnik, V.2
-
10
-
-
33847742313
-
-
J. Fritsh, Modular neural networks for speech recognition, Master Thesis, Carnegie Mellon University & University of Karlsrube, 1996.
-
-
-
-
11
-
-
33847716422
-
-
S. Gunn, Support vector machines for classification and regression, Technical Report ISIS-1-98, Image Speech & Intelligent Systems Group, University of Southampton, 1998.
-
-
-
-
13
-
-
0031568357
-
Bias/Variance analyses of mixtures-of-experts architectures
-
Jacobs R. Bias/Variance analyses of mixtures-of-experts architectures. Neural Computation 9 (1997) 369-383
-
(1997)
Neural Computation
, vol.9
, pp. 369-383
-
-
Jacobs, R.1
-
15
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algorithm
-
Jordan M., and Jacobs R. Hierarchical mixtures of experts and the EM algorithm. Neural Computation 6 (1994) 181-214
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.1
Jacobs, R.2
-
16
-
-
33847732367
-
-
J.T.-Y. Kwok, Support vector mixture for classification and regression problems, in: Proceedings of the 14th International Conference on Pattern Recognition, Brisbane, 1998, pp. 255-258.
-
-
-
-
17
-
-
84948971315
-
-
C.A.M. Lima, A.L.V. Coelho, F.J. Von Zuben, Mixture of experts applied to nonlinear dynamic systems identification: A comparative study, in: Proceedings of the VII Brazilian Symposium on Neural Networks, 2002, pp. 162-167.
-
-
-
-
18
-
-
85178307688
-
-
C.A.M. Lima, A.L.V. Coelho, F.J. Von Zuben, Ensembles of support vector machines for regression problems, in: Proceedings of the International Joint Conference on Neural Networks, Hawaii, USA, 2002, pp. 2381-2386.
-
-
-
-
20
-
-
33847759215
-
-
P. Moerland, Some methods for training mixtures of experts, Technical Report IDIAP-Com 97-05, IDIAP Research Institute, 1997.
-
-
-
-
21
-
-
0033356826
-
-
P. Moerland, Classification using localized mixtures of experts, in: Proceedings of International Conference on Artificial Neural Networks, Edinburgh, UK, 1999, pp. 838-843.
-
-
-
-
24
-
-
0032786303
-
Structurally adaptive modular networks for nonstationary environments
-
Ramamurti V., and Ghosh J. Structurally adaptive modular networks for nonstationary environments. IEEE Transactions on Neural Networks 10 (1999) 152-160
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, pp. 152-160
-
-
Ramamurti, V.1
Ghosh, J.2
-
25
-
-
33847733651
-
-
A. Rida, A. Labbi, C. Pellegrini, Local experts combination through density decomposition, in: Proceedings of Seventh International Workshop on Artificial Intelligence and Statistics, Morgan Kaufmann, 1999, pp. 130-136.
-
-
-
-
28
-
-
0003408420
-
-
MIT Press Cambridge, MA
-
Schölkopf B., and Smola A. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond (2002), MIT Press Cambridge, MA
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond
-
-
Schölkopf, B.1
Smola, A.2
-
30
-
-
85178298261
-
-
G.F. Smits, E.M. Jordaan, Improved SVM regression using mixture of kernels, in: Proceedings of the International Joint Conference on Neural Networks, Hawaii, USA, 2002, pp. 2785-2790.
-
-
-
-
32
-
-
0037695279
-
-
World Scientific Publishers
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., and Vandewalle J. Least Squares Support Vector Machines (2002), World Scientific Publishers
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
34
-
-
21644462102
-
-
R. Torres, R. Salas, H. Allende, C. Moraga, Robust expectation maximization learning algorithm for mixture of experts, in: Proceedings of the 7th International Work-Conference on Artificial and Natural Neural Networks, Lecture Notes in Computer Science, vol. 2686, 2003, pp. 238-245.
-
-
-
-
38
-
-
85140116568
-
An alternative model for mixtures of experts
-
Tesauro G., Touretzky D.S., and Leen T.K. (Eds), MIT Press
-
Xu L., Jordan M.I., and Hinton G.E. An alternative model for mixtures of experts. In: Tesauro G., Touretzky D.S., and Leen T.K. (Eds). Advances in Neural Information Processing Systems (1995), MIT Press 633-640
-
(1995)
Advances in Neural Information Processing Systems
, pp. 633-640
-
-
Xu, L.1
Jordan, M.I.2
Hinton, G.E.3
|