-
4
-
-
0038208381
-
-
(b) Stubbe, J; Nocera, D. G.; Yee, C. S.; Chang, M. C. Y. Chem. Rev. 2003, 103, 2167.
-
(2003)
Chem. Rev
, vol.103
, pp. 2167
-
-
Stubbe, J.1
Nocera, D.G.2
Yee, C.S.3
Chang, M.C.Y.4
-
5
-
-
0348111211
-
-
Yee, C. S.; Seyedsayamdost, M. R.; Chang, M. C. Y.; Nocera, D. G.; Stubbe, J. Biochemistry 2003, 42, 14541.
-
(2003)
Biochemistry
, vol.42
, pp. 14541
-
-
Yee, C.S.1
Seyedsayamdost, M.R.2
Chang, M.C.Y.3
Nocera, D.G.4
Stubbe, J.5
-
6
-
-
32244433011
-
-
(a) Seyedsayamdost, M. R.; Yee, C. S.; Reece, S. Y.; Nocera, D. G.; Stubbe, J. J. Am. Chem. Soc. 2006, 128, 1562.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 1562
-
-
Seyedsayamdost, M.R.1
Yee, C.S.2
Reece, S.Y.3
Nocera, D.G.4
Stubbe, J.5
-
7
-
-
32244442013
-
-
(b) Seyedsayamdost, M. R.; Reece, S. Y.; Nocera, D. G.; Stubbe, J. J. Am. Chem. Soc. 2006, 128, 1569.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 1569
-
-
Seyedsayamdost, M.R.1
Reece, S.Y.2
Nocera, D.G.3
Stubbe, J.4
-
9
-
-
0028030658
-
-
Jovanovic, S. J.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic, M. G. J. Am. Chem. Soc. 1994, 116, 4846.
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 4846
-
-
Jovanovic, S.J.1
Steenken, S.2
Tosic, M.3
Marjanovic, B.4
Simic, M.G.5
-
10
-
-
0025851264
-
-
(a) Climent, I.; Sjöberg, B. M.; Huang, C. Y. Biochemistry 1991, 30, 5164.
-
(1991)
Biochemistry
, vol.30
, pp. 5164
-
-
Climent, I.1
Sjöberg, B.M.2
Huang, C.Y.3
-
11
-
-
0026652152
-
-
d of 13 μM was determined for the interaction of α2 with ββ′, where the β′ monomer was missing the last 30 residues.
-
d of 13 μM was determined for the interaction of α2 with ββ′, where the β′ monomer was missing the last 30 residues.
-
-
-
-
12
-
-
33847636507
-
-
14C]-CDP was 8150 cpm/nmol.
-
14C]-CDP was 8150 cpm/nmol.
-
-
-
-
13
-
-
33847671164
-
-
-1, which can be accommodated by the mechanism proposed in Figure 3.
-
-1, which can be accommodated by the mechanism proposed in Figure 3.
-
-
-
-
14
-
-
0041823734
-
-
Ge, J.; Yu, G.; Ator, M.; Stubbe, J. Biochemistry 2003, 42, 10071.
-
(2003)
Biochemistry
, vol.42
, pp. 10071
-
-
Ge, J.1
Yu, G.2
Ator, M.3
Stubbe, J.4
-
15
-
-
33847629791
-
-
122•; decay or DOPA•; formation is observed by SF or EPR spectroscopies (see Figure S5).
-
122•; decay or DOPA•; formation is observed by SF or EPR spectroscopies (see Figure S5).
-
-
-
-
16
-
-
33847683613
-
-
Our previous studies with N3NDP (ref 14) as well as with DOPA-β2 (ref 6) have suggested an asymmetry in the α2/β2 interaction. With DOPA-ββ′, additional asymmetry is provided by removal of the last 22 residues in the β′-monomer. A model to account for differences in the yield of DOPA•; between DOPA-β2 and DOPA-ββ′ will be described in detail elsewhere manuscript in preparation
-
3NDP (ref 14) as well as with DOPA-β2 (ref 6) have suggested an asymmetry in the α2/β2 interaction. With DOPA-ββ′, additional asymmetry is provided by removal of the last 22 residues in the β′-monomer. A model to account for differences in the yield of DOPA•; between DOPA-β2 and DOPA-ββ′ will be described in detail elsewhere (manuscript in preparation).
-
-
-
-
17
-
-
27544491667
-
-
Bennati, M.; Robblee, J. H.; Mugnaini, V.; Stubbe, J.; Freed, J. H.; Borbat, P. J. Am. Chem. Soc. 2005, 127, 15014.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 15014
-
-
Bennati, M.1
Robblee, J.H.2
Mugnaini, V.3
Stubbe, J.4
Freed, J.H.5
Borbat, P.6
-
18
-
-
33847614576
-
-
This model also provides an explanation for how 25% DOPA• can be generated with similar kobss regardless of the amount of α2/DOPA-ββ′ complex initially formed (see Figure S7, Generation of DOPA• shifts the equilibrium to the right driving the reaction to completion. Because of fast equilibration Kd, the rate of DOPA• formation is limited by kc
-
c.
-
-
-
|