-
1
-
-
0001507012
-
-
a) D. Rosenthal, P. Grabowich, E. F. Sabo, J. Fried, J. Am. Chem. Soc. 1963, 85, 3971.
-
(1963)
J. Am. Chem. Soc
, vol.85
, pp. 3971
-
-
Rosenthal, D.1
Grabowich, P.2
Sabo, E.F.3
Fried, J.4
-
2
-
-
13544274022
-
-
b) T. Kume, H. Iwasaki, Y. Yamamoto, K. Akiba, Tetrahedron Lett. 1988, 29, 3825.
-
(1988)
Tetrahedron Lett
, vol.29
, pp. 3825
-
-
Kume, T.1
Iwasaki, H.2
Yamamoto, Y.3
Akiba, K.4
-
6
-
-
13544264701
-
-
b) T. Tozawa, H. Fujisawa, T. Mukaiyama, Chem. Lett. 2004, 33, 1454.
-
(2004)
Chem. Lett
, vol.33
, pp. 1454
-
-
Tozawa, T.1
Fujisawa, H.2
Mukaiyama, T.3
-
7
-
-
21644488006
-
-
c) T. Tozawa, Y. Yamane, T. Mukaiyama, Chem. Lett. 2005, 34, 514.
-
(2005)
Chem. Lett
, vol.34
, pp. 514
-
-
Tozawa, T.1
Yamane, Y.2
Mukaiyama, T.3
-
9
-
-
33645119015
-
-
a) T. Tozawa, Y. Yamane, T. Mukaiyama, Chem. Lett. 2006, 35, 56.
-
(2006)
Chem. Lett
, vol.35
, pp. 56
-
-
Tozawa, T.1
Yamane, Y.2
Mukaiyama, T.3
-
10
-
-
33745856227
-
-
b) T. Tozawa, Y. Yamane, T. Mukaiyama, Chem. Lett. 2006, 35, 360.
-
(2006)
Chem. Lett
, vol.35
, pp. 360
-
-
Tozawa, T.1
Yamane, Y.2
Mukaiyama, T.3
-
11
-
-
33750706200
-
-
c) T. Mukaiyama, H. Nagao, Y. Yamane, Chem. Lett. 2006, 35, 916.
-
(2006)
Chem. Lett
, vol.35
, pp. 916
-
-
Mukaiyama, T.1
Nagao, H.2
Yamane, Y.3
-
12
-
-
0000227367
-
-
For the preparation of glycine-derived silyl enolates, see
-
For the preparation of glycine-derived silyl enolates, see: G. Guanti, L. Banfi, E. Narisano, C. Scolastico, Tetrahedron 1988, 44, 3671.
-
(1988)
Tetrahedron
, vol.44
, pp. 3671
-
-
Guanti, G.1
Banfi, L.2
Narisano, E.3
Scolastico, C.4
-
13
-
-
33847609285
-
-
1HNMR analysis and elemental analysis (see Ref. 5a).
-
1HNMR analysis and elemental analysis (see Ref. 5a).
-
-
-
-
14
-
-
33847684403
-
-
1H NMR chemical shift of the characteristic olefinic proton, which resonates at a lower magnetic field in the syn isomer than in the anti isomer (see Ref. 4c).
-
1H NMR chemical shift of the characteristic olefinic proton, which resonates at a lower magnetic field in the syn isomer than in the anti isomer (see Ref. 4c).
-
-
-
-
17
-
-
33847622584
-
-
Typical experimental procedure for the preparation of 4 is shown in the following (Table 2, Entry 3, To a stirred solution of 1 (13.5 mg, 0.015 mmol) in CH2Cl2 (0.6 mL) were successively added a solution of 4-fluorochalcone (67.9 mg, 0.3 mmol) in CH2Cl2 (0.8 mL) and a solution of TMS enolate 3e (145.7 mg, 0.48 mmol) in CH2Cl2 (0.8 mL) at -78°C. After the mixture was stirred for 0.5 h at the same temparature, it was quenched with sat. NH 4Cl (aq) and the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous Na2SO4, and evaporated. The crude product was purified by preparative TLC (hexane/ EtOAc, 6/1) to give a (3R,4R)-3-diallylamino-6-(4-fluorophenyl, 4-phenyl-3,4-dihydropyran-2-one (4h, 106.4 mg, 98, 92% ee) as a coloress oil. 1HNMR (270 MHz, CDCl3) δ 7.65-7.61
-
3) δ 7.65-7.61 (m, 2H), 7.41-7.37 (m, 3H), 7.27-7.19 (m, 2H), 7.08-7.02 (m, 2H), 5.73 (d, J = 2.5 Hz, 1H), 5.51-5.36 (m, 2H), 5.07-4.99 (m, 4H), 3.98 (dd, J = 12.5 Hz, 2.5 Hz, 1H), 3.83 (d, J = 12.5 Hz, 1H), 3.49-3.32 (m, 4H). The enantiomeric excess was determined by HPLC analysis using DAICEL Chiralcel OD-H, hexane/2-propanol = 60/1, λ = 254 nm, flow rate = 1.0 mL/min, retention time = 7.3 min (major) and 9.2 min (minor).
-
-
-
-
18
-
-
33847686434
-
-
-3, T = 295 K. X-ray intensities were measured on a Rigaku AFC-5S diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.710690 Å). The final R factors was 0.043 (Rw = 0.098 for all data) for 1989 reflections with I > 2σ(I).
-
-3, T = 295 K. X-ray intensities were measured on a Rigaku AFC-5S diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.710690 Å). The final R factors was 0.043 (Rw = 0.098 for all data) for 1989 reflections with I > 2σ(I).
-
-
-
|