-
1
-
-
0000461463
-
Hierarchies of coupled soliton equations. I
-
Hirota R., and Ohta Y. Hierarchies of coupled soliton equations. I. J. Phys. Soc. Japan 60 (1991) 798-809
-
(1991)
J. Phys. Soc. Japan
, vol.60
, pp. 798-809
-
-
Hirota, R.1
Ohta, Y.2
-
2
-
-
0035538983
-
Pfaffianization of the Davey-Stewartson equations
-
Gilson C.R., and Nimmo J.J.C. Pfaffianization of the Davey-Stewartson equations. Theoret. and Math. Phys. 128 (2001) 870-882
-
(2001)
Theoret. and Math. Phys.
, vol.128
, pp. 870-882
-
-
Gilson, C.R.1
Nimmo, J.J.C.2
-
3
-
-
0035824453
-
Pfaffianization of the discrete KP equation
-
Gilson C.R., Nimmo J.J.C., and Tsujimoto S. Pfaffianization of the discrete KP equation. J. Phys. A 34 (2001) 10569-10575
-
(2001)
J. Phys. A
, vol.34
, pp. 10569-10575
-
-
Gilson, C.R.1
Nimmo, J.J.C.2
Tsujimoto, S.3
-
4
-
-
23044526851
-
A bilinear approach to a Pfaffian self-dual Yang-Mills equation
-
Ohta Y., Nimmo J.J.C., and Gilson C.R. A bilinear approach to a Pfaffian self-dual Yang-Mills equation. Glasg. Math. J. 43A (2001) 99-108
-
(2001)
Glasg. Math. J.
, vol.43 A
, pp. 99-108
-
-
Ohta, Y.1
Nimmo, J.J.C.2
Gilson, C.R.3
-
5
-
-
3242745239
-
Pfaffianization of the two-dimensional Toda lattice
-
Hu X.B., Zhao J.X., and Tam H.W. Pfaffianization of the two-dimensional Toda lattice. J. Math. Anal. Appl. 296 1 (2004) 256-261
-
(2004)
J. Math. Anal. Appl.
, vol.296
, Issue.1
, pp. 256-261
-
-
Hu, X.B.1
Zhao, J.X.2
Tam, H.W.3
-
6
-
-
0036451374
-
Generalization of the KP hierarchies: Pfaffian hierarchies
-
Gilson C.R. Generalization of the KP hierarchies: Pfaffian hierarchies. Theoret. and Math. Phys. 133 (2002) 1663-1674
-
(2002)
Theoret. and Math. Phys.
, vol.133
, pp. 1663-1674
-
-
Gilson, C.R.1
-
7
-
-
33748069497
-
Korteweg-de Vries equation and generalizations, II, Existence of conservation laws and constants of motion
-
Miura R.M., Gardner C.S., and Kruskal M.D. Korteweg-de Vries equation and generalizations, II, Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968) 1204
-
(1968)
J. Math. Phys.
, vol.9
, pp. 1204
-
-
Miura, R.M.1
Gardner, C.S.2
Kruskal, M.D.3
-
8
-
-
33847654660
-
A derivation of Gardner's equation, Dedicated to Martin David Kruskal
-
Miura M.R. A derivation of Gardner's equation, Dedicated to Martin David Kruskal. Methods Appl. Anal. 4 2 (1997) 134-140
-
(1997)
Methods Appl. Anal.
, vol.4
, Issue.2
, pp. 134-140
-
-
Miura, M.R.1
-
9
-
-
77952771289
-
Wave propagation in nonlinear lattice I
-
Wadati M. Wave propagation in nonlinear lattice I. J. Phys. Soc. Japan 38 (1975) 673-680
-
(1975)
J. Phys. Soc. Japan
, vol.38
, pp. 673-680
-
-
Wadati, M.1
-
10
-
-
2642521758
-
Wave propagation in nonlinear lattice II
-
Wadati M. Wave propagation in nonlinear lattice II. J. Phys. Soc. Japan 38 (1975) 681-686
-
(1975)
J. Phys. Soc. Japan
, vol.38
, pp. 681-686
-
-
Wadati, M.1
-
11
-
-
33847632450
-
Wave propagation in nonlinear lattice III
-
Kodama Y., and Wadati M. Wave propagation in nonlinear lattice III. J. Phys. Soc. Japan 41 (1976) 1499-1504
-
(1976)
J. Phys. Soc. Japan
, vol.41
, pp. 1499-1504
-
-
Kodama, Y.1
Wadati, M.2
-
12
-
-
0007250441
-
Inverse spectral transform for the (2 + 1)-dimensional Gardner equation
-
Konopelchenko B.G. Inverse spectral transform for the (2 + 1)-dimensional Gardner equation. Inverse Problems 7 (1991) 739-753
-
(1991)
Inverse Problems
, vol.7
, pp. 739-753
-
-
Konopelchenko, B.G.1
-
13
-
-
0035511439
-
Decomposition of the (2 + 1)-dimensional Gardner equation and its quasi-periodic solutions
-
Geng X., and Cao C. Decomposition of the (2 + 1)-dimensional Gardner equation and its quasi-periodic solutions. Nonlinearity 14 (2001) 1433-1452
-
(2001)
Nonlinearity
, vol.14
, pp. 1433-1452
-
-
Geng, X.1
Cao, C.2
-
14
-
-
0012894889
-
Algebro-geometric solutions of the (2 + 1)-dimensional Gardner equation
-
Zhou R., and Ma W.-X. Algebro-geometric solutions of the (2 + 1)-dimensional Gardner equation. Nuovo Cimento Soc. Ital. Fis. B (12) 115 12 (2000) 1419-1431
-
(2000)
Nuovo Cimento Soc. Ital. Fis. B (12)
, vol.115
, Issue.12
, pp. 1419-1431
-
-
Zhou, R.1
Ma, W.-X.2
|