-
1
-
-
0037592780
-
-
Wiley, New York
-
Adàmek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories. Wiley, New York (1990)
-
(1990)
Abstract and Concrete Categories
-
-
Adàmek, J.1
Herrlich, H.2
Strecker, G.E.3
-
2
-
-
0040277178
-
Generalized continuous and hypercontinuous lattices
-
Gierz, G., Lawson, J.D.: Generalized continuous and hypercontinuous lattices. Rocky Mt. J. Math. 11, 271-296 (1981)
-
(1981)
Rocky Mt. J. Math
, vol.11
, pp. 271-296
-
-
Gierz, G.1
Lawson, J.D.2
-
3
-
-
33847389858
-
-
Gierz, G., Lawson, J.D., Stralka, A.: Quasicontinuous posets. Houst. J. Math. 9, 191-208 (1983)
-
Gierz, G., Lawson, J.D., Stralka, A.: Quasicontinuous posets. Houst. J. Math. 9, 191-208 (1983)
-
-
-
-
4
-
-
0038141124
-
-
Cambridge University Press, Cambridge
-
Gierz, G., Hofmann, K., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)
-
(2003)
Continuous Lattices and Domains
-
-
Gierz, G.1
Hofmann, K.2
Keimel, K.3
Lawson, J.D.4
Mislove, M.5
Scott, D.6
-
5
-
-
33746459760
-
An upper power domain construction in terms of strongly compact sets
-
Springer, Berlin Heidelberg New York
-
Heckmann, R.: An upper power domain construction in terms of strongly compact sets. In: Lecture Notes in Computer Science, vol. 598, pp. 272-293. Springer, Berlin Heidelberg New York (1992)
-
(1992)
Lecture Notes in Computer Science
, vol.598
, pp. 272-293
-
-
Heckmann, R.1
-
6
-
-
0042888008
-
Scott is not always sober
-
Banaschewski, B, Hoffmann, R.E, eds, Continuous Lattices, Proc. Conf. Bremen, Springer, Berlin Heidelberg New York
-
Johnstone, P.T.: Scott is not always sober. In: Banaschewski, B., Hoffmann, R.E. (eds.) Continuous Lattices, Proc. Conf. Bremen 1979. Lecture Notes in Mathematics, vol. 871, pp. 282-283. Springer, Berlin Heidelberg New York (1981)
-
(1979)
Lecture Notes in Mathematics
, vol.871
, pp. 282-283
-
-
Johnstone, P.T.1
-
7
-
-
33847358801
-
On meet-continuous dcpos
-
Zhang, G.Q, Lawson, J, Liu, Y.M, Luo, M.K, eds, Kluwer, Boston, MA
-
Kou, H., Liu, Y.M., Luo, M.K.: On meet-continuous dcpos. In: Zhang, G.Q., Lawson, J., Liu, Y.M., Luo, M.K. (eds.) Domain Theory, Logic and Computation, pp. 137-149. Kluwer, Boston, MA (2003)
-
(2003)
Domain Theory, Logic and Computation
, pp. 137-149
-
-
Kou, H.1
Liu, Y.M.2
Luo, M.K.3
-
8
-
-
33847396608
-
-
Lawson, J.D.: The duality of continuous posets. Houst. J. Math. 5(3), 357-386 (1979)
-
Lawson, J.D.: The duality of continuous posets. Houst. J. Math. 5(3), 357-386 (1979)
-
-
-
-
9
-
-
1842459869
-
The round ideal completion via sobrification
-
Lawson, J.D.: The round ideal completion via sobrification. Topol. Proc. 22, 261-274 (1997)
-
(1997)
Topol. Proc
, vol.22
, pp. 261-274
-
-
Lawson, J.D.1
-
10
-
-
0042104308
-
-
Lawson, J.D.: The upper interval topology, property M and compactness. Electronic Notes in Theor. Comp. Sci. 13 (1998)
-
Lawson, J.D.: The upper interval topology, property M and compactness. Electronic Notes in Theor. Comp. Sci. 13 (1998)
-
-
-
-
11
-
-
2442427649
-
Posets having continuous intervals
-
Lawson, J.D., Xu, L.S.: Posets having continuous intervals. Theor. Comp. Sci. 316, 89-103 (2004)
-
(2004)
Theor. Comp. Sci
, vol.316
, pp. 89-103
-
-
Lawson, J.D.1
Xu, L.S.2
-
12
-
-
33847404098
-
-
Xu, L.S.: Consistently continuous posets and their directed completions. J. of Yangzhou University (Nature Science Edition), 3(1), 1-6 (2000) (in Chinese)
-
Xu, L.S.: Consistently continuous posets and their directed completions. J. of Yangzhou University (Nature Science Edition), 3(1), 1-6 (2000) (in Chinese)
-
-
-
-
13
-
-
33645982538
-
-
Xu, L.S.: Continuity of posets via Scott topology and sobrification. Topol. Its Appl. 153, 1886-1894 (2006)
-
Xu, L.S.: Continuity of posets via Scott topology and sobrification. Topol. Its Appl. 153, 1886-1894 (2006)
-
-
-
-
14
-
-
33847365878
-
-
Xu, X.Q., Liu, Y.M.: The Scott topology and Lawson topology on a Z-quasicontinuous domain. Chin. Ann. Math. 24A(3), 365-376 (2003) (in Chinese)
-
Xu, X.Q., Liu, Y.M.: The Scott topology and Lawson topology on a Z-quasicontinuous domain. Chin. Ann. Math. 24A(3), 365-376 (2003) (in Chinese)
-
-
-
|