메뉴 건너뛰기




Volumn 16, Issue 2, 2007, Pages 139-145

Prediction of chenille yarn and fabric abrasion resistance using radial basis function neural network models

Author keywords

Abrasion resistance; Artificial neural networks; Chenille yarn; Prediction; Radial basis functions

Indexed keywords


EID: 33847294760     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-006-0048-8     Document Type: Article
Times cited : (7)

References (21)
  • 1
    • 33847275449 scopus 로고    scopus 로고
    • ASTM D 4966-89 Standard Test Method for Abrasion Resistance of Textile Fabrics (Martindale Abrasion Tester Method)-Annual Book of ASTM Standards 07.1-2
    • ASTM D 4966-89 Standard Test Method for Abrasion Resistance of Textile Fabrics (Martindale Abrasion Tester Method)-Annual Book of ASTM Standards Vol 07.1-2
  • 2
  • 5
    • 0029108828 scopus 로고
    • Yarn strength prediction using neural networks
    • Cheng L, Adams DL (1995) Yarn strength prediction using neural networks. Textile Res J 65(9):495-500
    • (1995) Textile Res J , vol.65 , Issue.9 , pp. 495-500
    • Cheng, L.1    Adams, D.L.2
  • 6
    • 0037296774 scopus 로고    scopus 로고
    • Evaluating and comparing the physical properties of spliced yarns by regression and neural network techniques
    • Cheng KPS, Lam HLI (2003) Evaluating and comparing the physical properties of spliced yarns by regression and neural network techniques. Text Res J 73(2):161-164
    • (2003) Text Res J , vol.73 , Issue.2 , pp. 161-164
    • Cheng, K.P.S.1    Lam, H.L.I.2
  • 7
    • 33847248779 scopus 로고    scopus 로고
    • Chenille Background Brochure (2000) Chenille International Manufacturer's Association (CIMA), Italy, pp 1-3
    • Chenille Background Brochure (2000) Chenille International Manufacturer's Association (CIMA), Italy, pp 1-3
  • 8
    • 3843110297 scopus 로고    scopus 로고
    • Fiber segment length distribution on the yarn surface in relation to yarn abrasion resistance
    • Choi KF, Kim KL (2004) Fiber segment length distribution on the yarn surface in relation to yarn abrasion resistance. Text Res J 74(7):603-606
    • (2004) Text Res J , vol.74 , Issue.7 , pp. 603-606
    • Choi, K.F.1    Kim, K.L.2
  • 9
    • 0030478589 scopus 로고    scopus 로고
    • Prediction of rotor spun cotton yarn quality: A comparison of neural network and regression algorithm
    • Ethridge D, Zhu R (1996) Prediction of rotor spun cotton yarn quality: a comparison of neural network and regression algorithm. In: Proceedings of the beltwide cotton conference, vol 2, pp 1314-1317
    • (1996) Proceedings of the beltwide cotton conference , vol.2 , pp. 1314-1317
    • Ethridge, D.1    Zhu, R.2
  • 13
    • 3843084190 scopus 로고    scopus 로고
    • Predicting the breaking elongation of ring spun cotton yarns using mathematical, statistical, and artificial neural network models
    • Majumdar PK, Majumdar A (2004) Predicting the breaking elongation of ring spun cotton yarns using mathematical, statistical, and artificial neural network models. Text Res J 74(7):652-655
    • (2004) Text Res J , vol.74 , Issue.7 , pp. 652-655
    • Majumdar, P.K.1    Majumdar, A.2
  • 14
    • 16244403274 scopus 로고    scopus 로고
    • Application of linear regression, artificial neural network and neuro-fuzzy algorithms to predict the breaking elongation of rotor-spun yarns
    • Majumdar A, Majumdar P K, Sarkar B (2005) Application of linear regression, artificial neural network and neuro-fuzzy algorithms to predict the breaking elongation of rotor-spun yarns. Indian J Fibre Textile Res 30(1):19-25
    • (2005) Indian J Fibre Textile Res , vol.30 , Issue.1 , pp. 19-25
    • Majumdar, A.1    Majumdar, P.K.2    Sarkar, B.3
  • 16
    • 0031143834 scopus 로고    scopus 로고
    • Improving the error backpropagation algorithm with a modified error function
    • Oh S-H (1997) Improving the error backpropagation algorithm with a modified error function. IEEE Trans Neural Netw 8(3):799-803
    • (1997) IEEE Trans Neural Netw , vol.8 , Issue.3 , pp. 799-803
    • Oh, S.-H.1
  • 17
    • 3142707566 scopus 로고    scopus 로고
    • Influence of chenille yarn manufacturing parameters on yarn and upholstery fabric abrasion resistance
    • Özdemir Ö, Çeven E K (2004) Influence of chenille yarn manufacturing parameters on yarn and upholstery fabric abrasion resistance. Text Res J 74(6): 515-520
    • (2004) Text Res J , vol.74 , Issue.6 , pp. 515-520
    • Özdemir, O.1    Çeven, E.K.2
  • 19
    • 0030789753 scopus 로고    scopus 로고
    • Analysis of the modeling methodologies for predicting the strength of airjet spun yarns
    • Rajamanickam R, Hansen SM, Jayaraman S (1997) Analysis of the modeling methodologies for predicting the strength of airjet spun yarns. Text Res J 67(1):39-44
    • (1997) Text Res J , vol.67 , Issue.1 , pp. 39-44
    • Rajamanickam, R.1    Hansen, S.M.2    Jayaraman, S.3
  • 20
    • 0029412822 scopus 로고
    • Prediction of yarn tensile properties using artificial neural networks
    • Ramesh MC, Rajamanickam R, Jayaraman S (1995) Prediction of yarn tensile properties using artificial neural networks. J Text Inst 86:459-469
    • (1995) J Text Inst , vol.86 , pp. 459-469
    • Ramesh, M.C.1    Rajamanickam, R.2    Jayaraman, S.3
  • 21
    • 0031231403 scopus 로고    scopus 로고
    • Predicting hairiness for ring and rotor spun yarns and analyzing the impact of fiber properties
    • Zhu R, Ethridge D (1997) Predicting hairiness for ring and rotor spun yarns and analyzing the impact of fiber properties. Text Res J 67:694-698
    • (1997) Text Res J , vol.67 , pp. 694-698
    • Zhu, R.1    Ethridge, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.