-
1
-
-
0002046992
-
Bounded semi-groups of matrices
-
M. A. Berger, Y. Wang, Bounded semi-groups of matrices, Linear Alg. Appl., 166 (1992), pp. 21-27.
-
(1992)
Linear Alg. Appl
, vol.166
, pp. 21-27
-
-
Berger, M.A.1
Wang, Y.2
-
2
-
-
0001446685
-
-
V. Yu. Protasov, The joint spectral radius and invariant sets of linear operators, Fundamentalnaya i prikladnaya matematika, 2 (1996), No 1, pp. 205-231.
-
(1996)
The joint spectral radius and invariant sets of linear operators, Fundamentalnaya i prikladnaya matematika
, vol.2
, Issue.1
, pp. 205-231
-
-
Protasov, V.Y.1
-
3
-
-
0001265433
-
Fractals and self-similarity
-
J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), No 5, pp. 713-747.
-
(1981)
Indiana Univ. Math. J
, vol.30
, Issue.5
, pp. 713-747
-
-
Hutchinson, J.E.1
-
4
-
-
33644688747
-
Nontrivial fractals in the plane and linear operators with joint spectral radius equal to I
-
I.Sheipak, Nontrivial fractals in the plane and linear operators with joint spectral radius equal to I, Math. Notes 63 (1998), No.5, pp. 701-705.
-
(1998)
Math. Notes
, vol.63
, Issue.5
, pp. 701-705
-
-
Sheipak, I.1
-
5
-
-
9644300965
-
Computing the joint spectral radius
-
G. Gripenberg, Computing the joint spectral radius, Lin. Alg. Appl., 234 (1996), pp. 43-60.
-
(1996)
Lin. Alg. Appl
, vol.234
, pp. 43-60
-
-
Gripenberg, G.1
-
6
-
-
0000160525
-
Two-scale, difference equations. II. Local regularity, infinite products of matrices and fractals
-
I. Daubechies, J.Lagarias, Two-scale, difference equations. II. Local regularity, infinite products of matrices and fractals, SIAM. J. Math. Anal. 23 (1992), 1031-1079.
-
(1992)
SIAM. J. Math. Anal
, vol.23
, pp. 1031-1079
-
-
Daubechies, I.1
Lagarias, J.2
-
7
-
-
21344484187
-
Characterization of scaling functions. I. Continuous solutions
-
D.Collela, C.Heil, Characterization of scaling functions. I. Continuous solutions, SIAM J. Matrix Anal. Appl., 15 (1994), 496-518.
-
(1994)
SIAM J. Matrix Anal. Appl
, vol.15
, pp. 496-518
-
-
Collela, D.1
Heil, C.2
-
8
-
-
0034262644
-
Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard
-
V. Blondel, J. M. Tsitsiklis, Approximating the spectral radius of sets of matrices in the max-algebra is NP-hard, IEEE Trans. Autom. Control., 45 (2000), No 9, pp. 1762-1765.
-
(2000)
IEEE Trans. Autom. Control
, vol.45
, Issue.9
, pp. 1762-1765
-
-
Blondel, V.1
Tsitsiklis, J.M.2
-
9
-
-
0009944648
-
The boundedness of all products of a pair of matrices is undecidable
-
V. Blondel, J.M. Tsitsiklis, The boundedness of all products of a pair of matrices is undecidable, Syst. Control Lett., 41 (2000), No 2, pp. 135-140.
-
(2000)
Syst. Control Lett
, vol.41
, Issue.2
, pp. 135-140
-
-
Blondel, V.1
Tsitsiklis, J.M.2
-
10
-
-
0347327012
-
p-solutions for two-scale dilation equations
-
p-solutions for two-scale dilation equations, SIAM J. Math. Anal. 26 (1995), pp. 1018-1046.
-
(1995)
SIAM J. Math. Anal
, vol.26
, pp. 1018-1046
-
-
Lau, K.S.1
Wang, J.2
-
11
-
-
33847193686
-
-
Y.Wang, Two-scale dilation equations and the mean spectral radius. Random Comput.Dynamic, 4 (1996),No 1, pp.49-72
-
Y.Wang, Two-scale dilation equations and the mean spectral radius. Random Comput.Dynamic, 4 (1996),No 1, pp.49-72
-
-
-
-
13
-
-
33748042317
-
The generalized spectral radius. The geometric approach
-
V. Yu. Protasov, The generalized spectral radius. The geometric approach, Izvestiya Mathematics. 61 (1997), No 5, pp. 995-1030.
-
(1997)
Izvestiya Mathematics
, vol.61
, Issue.5
, pp. 995-1030
-
-
Protasov, V.Y.1
-
14
-
-
33847197303
-
A generalization of the joint spectral radius: The geometrical approach
-
V. Yu. Protasov, A generalization of the joint spectral radius: the geometrical approach, Facta Univ. Ser. Math. Inform. No. 13 (1998), pp. 19-23.
-
(1998)
Facta Univ. Ser. Math. Inform
, Issue.13
, pp. 19-23
-
-
Protasov, V.Y.1
|