메뉴 건너뛰기




Volumn 3, Issue , 2005, Pages 1891-1894

Self-organising map as a natural kernel method

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; ENTROPY; FUNCTIONS; PARAMETER ESTIMATION; PROBLEM SOLVING; STATE SPACE METHODS;

EID: 33847154558     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (18)
  • 1
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • M. Aizerman, E. Braverman and L. Rozonoer (1964), Theoretical foundations of the potential function method in pattern recognition learning, Automation and Remote Control, vol. 25, 821-837.
    • (1964) Automation and Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.1    Braverman, E.2    Rozonoer, L.3
  • 3
    • 0141948198 scopus 로고    scopus 로고
    • N. Allinson, H. Yin, L. Allinson and J. Slack Eds, London, Springer
    • N. Allinson, H. Yin, L. Allinson and J. Slack (Eds.) (2001), Advances in Self-Organising Maps, London, Springer.
    • (2001) Advances in Self-Organising Maps
  • 5
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik (1995), Support vector networks, Machine Learning, vol. 20, 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 0344972928 scopus 로고    scopus 로고
    • Self-organizing maps: Generalization and new optimization techniques
    • R.J. T. Graepel, M. Burger and K. Obermayer (1998), Self-organizing maps: Generalization and new optimization techniques, Neurocomputing, vol 21, 173-190.
    • (1998) Neurocomputing , vol.21 , pp. 173-190
    • Graepel, R.J.T.1    Burger, M.2    Obermayer, K.3
  • 8
    • 0002059002 scopus 로고    scopus 로고
    • Energy functions for self-organizing maps
    • E. Oja and S. Kaski, eds, Elsevier
    • T. Heskes (1999), Energy functions for self-organizing maps, In E. Oja and S. Kaski, eds, Kohonen Maps, Elsevier.
    • (1999) Kohonen Maps
    • Heskes, T.1
  • 11
    • 0001153915 scopus 로고
    • Clustering properties of hierarchical self-organizing maps
    • J. Lampinen and E. Oja (1992), Clustering properties of hierarchical self-organizing maps, Journal of Mathematical Imaging and Vision, vol 2, 261-272.
    • (1992) Journal of Mathematical Imaging and Vision , vol.2 , pp. 261-272
    • Lampinen, J.1    Oja, E.2
  • 12
    • 33847108281 scopus 로고    scopus 로고
    • Kernel self-organising maps for classification
    • submitted to
    • K.W. Lau and H. Yin (2005), Kernel self-organising maps for classification, submitted to Neurocomputing.
    • (2005) Neurocomputing
    • Lau, K.W.1    Yin, H.2
  • 13
    • 26544444117 scopus 로고    scopus 로고
    • Applied Computational Intelligence Research Unit, The University of Paisley
    • D. MacDonald and C. Fyfe (2000), The kernel self organising map, Applied Computational Intelligence Research Unit, The University of Paisley.
    • (2000) The kernel self organising map
    • MacDonald, D.1    Fyfe, C.2
  • 14
    • 2942672559 scopus 로고    scopus 로고
    • A kernel-base SOM classifer in input space
    • in Chinese
    • Z.S. Pan, S.C. Chen and D.Q. Zhang (2004), A kernel-base SOM classifer in input space, Acta Electronica Sinica, vol 32, 227-231 (in Chinese).
    • (2004) Acta Electronica Sinica , vol.32 , pp. 227-231
    • Pan, Z.S.1    Chen, S.C.2    Zhang, D.Q.3
  • 15
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola and K.R. Müller (1998), Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, vol. 10, 1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.R.3
  • 17
    • 0036791873 scopus 로고    scopus 로고
    • Kernel-based topographic map formation achieved with an information-theoretic approach
    • M. van Hulle (2002), Kernel-based topographic map formation achieved with an information-theoretic approach, Neural Networks, vol 15, 1029-1039.
    • (2002) Neural Networks , vol.15 , pp. 1029-1039
    • van Hulle, M.1
  • 18
    • 0035272084 scopus 로고    scopus 로고
    • Self-organising mixture networks for probability density estimation
    • H. Yin and N. Allinson (2001), Self-organising mixture networks for probability density estimation, IEEE trans. Neural Networks, vol 12, 405-411
    • (2001) IEEE trans. Neural Networks , vol.12 , pp. 405-411
    • Yin, H.1    Allinson, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.