메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages 1622-1628

New applications for information fusion and soil moisture forecasting

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; LEARNING SYSTEMS; MOISTURE; SOILS; STATISTICAL METHODS;

EID: 33847118178     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICIF.2005.1592050     Document Type: Conference Paper
Times cited : (28)

References (26)
  • 1
    • 84947875384 scopus 로고    scopus 로고
    • Allen, P.B., and J. W. Nancy, 1991. Hydrology of the Little Washita River Watershed, Oklahoma: Data and analyses. ARS-90, USDA-ARS-NAWQL, Durant, OK.
    • Allen, P.B., and J. W. Nancy, 1991. Hydrology of the Little Washita River Watershed, Oklahoma: Data and analyses. ARS-90, USDA-ARS-NAWQL, Durant, OK.
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology II: Hydrologic applications
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of the Artificial Neural Networks in Hydrology, 2000. Artificial neural networks in hydrology II: Hydrologic applications. Journal of Hydrologic Engineering, ASCE, 5(2):124-137.
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 124-137
  • 3
    • 10944274219 scopus 로고    scopus 로고
    • Asefa, T., M. W. Kemblowski, G. Urroz, M. McKee, and A. Khalil, 2004. Support vectors-based groundwater head observation networks design. Water Resources Research, 40 (11): W11509, 0.1029/2004WR003304.
    • Asefa, T., M. W. Kemblowski, G. Urroz, M. McKee, and A. Khalil, 2004. Support vectors-based groundwater head observation networks design. Water Resources Research, 40 (11): W11509, 0.1029/2004WR003304.
  • 4
    • 2542500360 scopus 로고    scopus 로고
    • Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks
    • Baghdadi, N., S. Gaultier, and C. King, 2002. Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks. Canadian Journal of Remote Sensing, 28, 5, pp. 701-711.
    • (2002) Canadian Journal of Remote Sensing , vol.28 , Issue.5 , pp. 701-711
    • Baghdadi, N.1    Gaultier, S.2    King, C.3
  • 6
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
    • David, R. L., and M. J. Gregory, 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35 (1), 233-241.
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • David, R.L.1    Gregory, M.J.2
  • 9
    • 20844458468 scopus 로고    scopus 로고
    • Applicability of statistical learning algorithms in groundwater quality modeling
    • doi:10.1029/2004WR003608
    • Khalil, A. F., Almasri, M. N., McKee, M., Kaluarachchi, J. J., 2005. Applicability of statistical learning algorithms in groundwater quality modeling. Water Resources Research, 41 (5), W05010, doi:10.1029/2004WR003608..
    • (2005) Water Resources Research , vol.41 , Issue.5
    • Khalil, A.F.1    Almasri, M.N.2    McKee, M.3    Kaluarachchi, J.J.4
  • 10
    • 0036547448 scopus 로고    scopus 로고
    • Conditional first-order second moment method and its application to the quantification of uncertainty in groundwater modeling
    • Kunstmann, H., W. Kinzelbach, and T. Siegfried, 2002. Conditional first-order second moment method and its application to the quantification of uncertainty in groundwater modeling. Water Resources Research, 38(4): 1035.
    • (2002) Water Resources Research , vol.38 , Issue.4 , pp. 1035
    • Kunstmann, H.1    Kinzelbach, W.2    Siegfried, T.3
  • 11
    • 0036772522 scopus 로고    scopus 로고
    • Bayesian automatic relevance determination algorithms for classifying gene expression data
    • Li, Y., C. Campbell, and M. Tipping, 2002. Bayesian automatic relevance determination algorithms for classifying gene expression data. Bioinformatics, 18 (10), 1332-1339.
    • (2002) Bioinformatics , vol.18 , Issue.10 , pp. 1332-1339
    • Li, Y.1    Campbell, C.2    Tipping, M.3
  • 13
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay, D. J., 1992. Bayesian interpolation. Neural Computation, 4 (3), 415-447.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.1
  • 16
    • 0031375732 scopus 로고    scopus 로고
    • Mukherjee, S., E. Osuna, and F. Girosi, 1997. Nonlinear prediction of chaotic time series using support vector machines. Proceedings of IEEE Workshops on Neural Network for Signal Processing, Amelia Island, FL.
    • Mukherjee, S., E. Osuna, and F. Girosi, 1997. Nonlinear prediction of chaotic time series using support vector machines. Proceedings of IEEE Workshops on Neural Network for Signal Processing, Amelia Island, FL.
  • 19
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machine
    • edited by S. Solla, T. Leen, and K.-R. Muller, pp, MIT Press, Cambridge, MA
    • Tipping, M., 2000. The relevance vector machine. In Advances in Neural Information Processing Systems, 12, edited by S. Solla, T. Leen, and K.-R. Muller, pp. 652-658, MIT Press, Cambridge, MA.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 652-658
    • Tipping, M.1
  • 20
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping, M.E., 2001. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning, 1:211-244.
    • (2001) Journal of Machine Learning , vol.1 , pp. 211-244
    • Tipping, M.E.1
  • 23
    • 0000608177 scopus 로고
    • A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline-smoothing problem
    • Wahba, G., 1985. A comparison of GCV and GML for choosing the smoothing parameter in the generalized spline-smoothing problem. The Annals of Statistics, 4:1378-1402.
    • (1985) The Annals of Statistics , vol.4 , pp. 1378-1402
    • Wahba, G.1
  • 24
    • 0002575135 scopus 로고
    • On the evaluation of model performance in physical geography
    • G. L. Gaile and C. J. Willmott Eds, Dordrecht, Holland
    • Willmott, C. J., 1984. On the evaluation of model performance in physical geography. In G. L. Gaile and C. J. Willmott (Eds.), Spatial Statistics and Models, pp. 443-460 Dordrecht, Holland.
    • (1984) Spatial Statistics and Models , pp. 443-460
    • Willmott, C.J.1
  • 26
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real time hydrologic forecasting
    • Yu, X.Y, S.Y. Liong, and V. Babovic, 2004. EC-SVM approach for real time hydrologic forecasting. Journal of Hydroinformatics 6:209-223.
    • (2004) Journal of Hydroinformatics , vol.6 , pp. 209-223
    • Yu, X.Y.1    Liong, S.Y.2    Babovic, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.