-
1
-
-
1042298863
-
-
J. Arino, C. C. McCluskey, and P. van den Driessche, GLOBAL RESULTS FOR AN EPIDEMIC MODEL WITH VACCINATION THAT EXHIBITS BACKWARD BIFURCATION. SIAM J Appl Math 64 (2003) 260-76.
-
J. Arino, C. C. McCluskey, and P. van den Driessche, GLOBAL RESULTS FOR AN EPIDEMIC MODEL WITH VACCINATION THAT EXHIBITS BACKWARD BIFURCATION. SIAM J Appl Math 64 (2003) 260-76.
-
-
-
-
2
-
-
0029055539
-
A CORE GROUP MODEL FOR DISEASE TRANSMISSION. Math
-
K. P. Hadeler and C. Castillo-Chavez, A CORE GROUP MODEL FOR DISEASE TRANSMISSION. Math Biosci 128 (1995) 41-55.
-
(1995)
Biosci
, vol.128
, pp. 41-55
-
-
Hadeler, K.P.1
Castillo-Chavez, C.2
-
3
-
-
0030882301
-
BACKWARD BIFURCATION IN EPIDEMIC CONTROL. Math
-
K. P. Hadeler and P. van den Driessche, BACKWARD BIFURCATION IN EPIDEMIC CONTROL. Math Biosci 146 (1997) 15-35.
-
(1997)
Biosci
, vol.146
, pp. 15-35
-
-
Hadeler, K.P.1
van den Driessche, P.2
-
4
-
-
85039223382
-
-
E. J. Allen, STOCHASTIC DIFFERENTIAL EQUATIONS AND PERSISTENCE TIME FOR TWO INTERACTING POPULATIONS. Dyn Cont Discrete and Impulsive Systems 5 (1999) 271-81.
-
E. J. Allen, STOCHASTIC DIFFERENTIAL EQUATIONS AND PERSISTENCE TIME FOR TWO INTERACTING POPULATIONS. Dyn Cont Discrete and Impulsive Systems 5 (1999) 271-81.
-
-
-
-
5
-
-
3042695162
-
-
N. Kirupaharan and L. J. S. Allen, COEXISTENCE OF MULTIPLE PATHOGEN STRAINS IN STOCHASTIC EPIDEMIC MODELS WITH DENSITY-DEPENDENT MORTALITY. Bull Math Biol 66 (2004) 841-64.
-
N. Kirupaharan and L. J. S. Allen, COEXISTENCE OF MULTIPLE PATHOGEN STRAINS IN STOCHASTIC EPIDEMIC MODELS WITH DENSITY-DEPENDENT MORTALITY. Bull Math Biol 66 (2004) 841-64.
-
-
-
-
6
-
-
85039212925
-
-
L. J. S. Allen, AN INTRODUCTION TO STOCHASTIC PROCESSES WITH APPLICATIONS TO BIOLOGY. Prentice Hall, Upper Saddle River, N. J., 2003.
-
L. J. S. Allen, AN INTRODUCTION TO STOCHASTIC PROCESSES WITH APPLICATIONS TO BIOLOGY. Prentice Hall, Upper Saddle River, N. J., 2003.
-
-
-
-
7
-
-
85039218991
-
-
N. T. J. Bailey, THE MATHEMATICAL THEORY OF INFECTIOUS DISEASES AND ITS APPLICATIONS. Griffin, London, 1975.
-
N. T. J. Bailey, THE MATHEMATICAL THEORY OF INFECTIOUS DISEASES AND ITS APPLICATIONS. Griffin, London, 1975.
-
-
-
-
8
-
-
85039187907
-
-
F. A. Ball, A NOTE ON THE TOTAL SIZE DISTRIBUTION OF EPIDEMIC MODELS. J Appl Prob 23 (1986) 832-36.
-
F. A. Ball, A NOTE ON THE TOTAL SIZE DISTRIBUTION OF EPIDEMIC MODELS. J Appl Prob 23 (1986) 832-36.
-
-
-
-
9
-
-
85039220485
-
-
D. J. Daley and J. Gani, EPIDEMIC MODELLING: AN INTRODUCTION. Cambridge Studies in Mathematical Biology, 15. Cambridge Univ. Press, Cambridge, 1999.
-
D. J. Daley and J. Gani, EPIDEMIC MODELLING: AN INTRODUCTION. Cambridge Studies in Mathematical Biology, Vol. 15. Cambridge Univ. Press, Cambridge, 1999.
-
-
-
-
10
-
-
85039216101
-
-
J. -P. Gabriel, C. Lefèvre, and P. Picard (Eds.), STOCHASTIC PROCESSES IN EPIDEMIC THEORY. Lecture Notes in Biomathematics 86. Springer-Verlag, New York, Berlin, Heidelberg, 1990.
-
J. -P. Gabriel, C. Lefèvre, and P. Picard (Eds.), STOCHASTIC PROCESSES IN EPIDEMIC THEORY. Lecture Notes in Biomathematics 86. Springer-Verlag, New York, Berlin, Heidelberg, 1990.
-
-
-
-
11
-
-
0027305851
-
THE STOCHASTIC SI EPIDEMIC MODEL WITH RECRUITMENT AND DEATHS I. COMPARISON WITH THE CLOSED SIS MODEL. Math
-
J. Jacquez and C. P. Simon, THE STOCHASTIC SI EPIDEMIC MODEL WITH RECRUITMENT AND DEATHS I. COMPARISON WITH THE CLOSED SIS MODEL. Math Biosci 117 (1993) 77-125.
-
(1993)
Biosci
, vol.117
, pp. 77-125
-
-
Jacquez, J.1
Simon, C.P.2
-
12
-
-
85039190407
-
-
C. J. Mode and C. K. Sleeman, STOCHASTIC PROCESSES IN EPIDEMIOLOGY. HIV/AIDS, OTHER INFECTIOUS DISEASES AND COMPUTERS. World Scientific, Singapore, New Jersey, 2000.
-
C. J. Mode and C. K. Sleeman, STOCHASTIC PROCESSES IN EPIDEMIOLOGY. HIV/AIDS, OTHER INFECTIOUS DISEASES AND COMPUTERS. World Scientific, Singapore, New Jersey, 2000.
-
-
-
-
13
-
-
85039237407
-
-
D. Mollison (Ed.), EPIDEMIC MODELS: THEIR STRUCTURE AND RELATION TO DATA. Cambridge Univ. Press, Cambridge, 1995.
-
D. Mollison (Ed.), EPIDEMIC MODELS: THEIR STRUCTURE AND RELATION TO DATA. Cambridge Univ. Press, Cambridge, 1995.
-
-
-
-
14
-
-
2542509066
-
ON THE QUASI-STATIONARY DISTRIBUTION OF THE STOCHASTIC LOGISTIC EPIDEMIC
-
I. Nasell, ON THE QUASI-STATIONARY DISTRIBUTION OF THE STOCHASTIC LOGISTIC EPIDEMIC. Math Biosci 156 (1999) 21-40.
-
(1999)
Math. Biosc.
, vol.156
, pp. 21-40
-
-
Nasell, I.1
-
15
-
-
16244363078
-
-
I. Nasell, A NEW LOOK AT CRITICAL COMMUNITY SIZE FOR CHILDHOOD INFECTIONS. Theor Pop Biol 67 (2005) 203-16.
-
I. Nasell, A NEW LOOK AT CRITICAL COMMUNITY SIZE FOR CHILDHOOD INFECTIONS. Theor Pop Biol 67 (2005) 203-16.
-
-
-
-
16
-
-
17744385524
-
-
M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel, and B. M. Sahai, A VACCINATION MODEL FOR TRANSMISSION DYNAMICS OF INFLUENZA. SIAM J Appl. Dyn Sys 3 (2004) 503-24.
-
M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel, and B. M. Sahai, A VACCINATION MODEL FOR TRANSMISSION DYNAMICS OF INFLUENZA. SIAM J Appl. Dyn Sys 3 (2004) 503-24.
-
-
-
-
17
-
-
0026335575
-
ASSESSING THE VARIABILITY OF STOCHASTIC EPIDEMICS. Math
-
V. Isham, ASSESSING THE VARIABILITY OF STOCHASTIC EPIDEMICS. Math Biosci 107 (1991) 209-24.
-
(1991)
Biosci
, vol.107
, pp. 209-224
-
-
Isham, V.1
-
18
-
-
0347063875
-
-
A. L. Lloyd, ESTIMATING VARIABILITY IN MODELS FOR RECURRENT EPIDEMICS: ASSESSING THE USE OF MOMENT CLOSURE TECHNIQUES. Theor Pop Biol 65 (2004) 49-65.
-
A. L. Lloyd, ESTIMATING VARIABILITY IN MODELS FOR RECURRENT EPIDEMICS: ASSESSING THE USE OF MOMENT CLOSURE TECHNIQUES. Theor Pop Biol 65 (2004) 49-65.
-
-
-
-
19
-
-
85039208278
-
-
J. M. Ortega, MATRIX THEORY A SECOND COURSE. Plenum Press, New York, 1987.
-
J. M. Ortega, MATRIX THEORY A SECOND COURSE. Plenum Press, New York, 1987.
-
-
-
-
20
-
-
85039179808
-
-
T. C. Gard, INTRODUCTION TO STOCHASTIC DIFFERENTIAL EQUATIONS. Marcel Dekker, Inc., New York and Basel, 1988.
-
T. C. Gard, INTRODUCTION TO STOCHASTIC DIFFERENTIAL EQUATIONS. Marcel Dekker, Inc., New York and Basel, 1988.
-
-
-
-
21
-
-
85039188125
-
-
P. E. Kloeden and E. Platen, NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS. Springer-Verlag, New York, 1992.
-
P. E. Kloeden and E. Platen, NUMERICAL SOLUTION OF STOCHASTIC DIFFERENTIAL EQUATIONS. Springer-Verlag, New York, 1992.
-
-
-
-
22
-
-
85039222430
-
-
T. G. Kurtz, LIMIT THEOREMS FOR SEQUENCES OF JUMP MARKOV PROCESSES APPROXIMATING ORDINARY DIFFERENTIAL PROCESSES. J Appl Prob 8 (1971) 344-56.
-
T. G. Kurtz, LIMIT THEOREMS FOR SEQUENCES OF JUMP MARKOV PROCESSES APPROXIMATING ORDINARY DIFFERENTIAL PROCESSES. J Appl Prob 8 (1971) 344-56.
-
-
-
-
23
-
-
0042531779
-
-
S. M. Henson, A. A. King, R. F. Costantino, J. M. Gushing, B. Dennis, and R. A. Desharnais, EXPLAINING AND PREDICTING PATTERNS IN STOCHASTIC POPULATION SYSTEMS. Proc Roy Soc Lond B 270 (2003) 1549-53.
-
S. M. Henson, A. A. King, R. F. Costantino, J. M. Gushing, B. Dennis, and R. A. Desharnais, EXPLAINING AND PREDICTING PATTERNS IN STOCHASTIC POPULATION SYSTEMS. Proc Roy Soc Lond B 270 (2003) 1549-53.
-
-
-
-
24
-
-
3042626993
-
-
S. M. Henson, J. R. Reilly, S. L. Robertson, M. C. Shu, E. W. D. Rozier, and J. M. Cushing, PREDICTING IRREGULARITIES IN POPULATION CYCLES. SIAM J Applied Dyn Sys 2 (2003) 238-53.
-
S. M. Henson, J. R. Reilly, S. L. Robertson, M. C. Shu, E. W. D. Rozier, and J. M. Cushing, PREDICTING IRREGULARITIES IN POPULATION CYCLES. SIAM J Applied Dyn Sys 2 (2003) 238-53.
-
-
-
|