메뉴 건너뛰기




Volumn 2005, Issue , 2005, Pages 456-461

Using rough sets to edit training set in k-NN method

Author keywords

Data analysis; k NN method; Rough set theory

Indexed keywords

APPROXIMATION THEORY; DATA REDUCTION; NUMERICAL METHODS;

EID: 33846955818     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISDA.2005.98     Document Type: Conference Paper
Times cited : (5)

References (30)
  • 3
    • 0032026327 scopus 로고    scopus 로고
    • Machine learning from examples: Inductive and Lazy methods
    • Lopez, R.M. and Armengol, E.. Machine learning from examples: Inductive and Lazy methods. Data & Knowledge Engineering 25 (1998) 99-123.
    • (1998) Data & Knowledge Engineering , vol.25 , pp. 99-123
    • Lopez, R.M.1    Armengol, E.2
  • 4
    • 0011441842 scopus 로고    scopus 로고
    • The nearest neighbor rule and the reduction of the training sample size
    • Castellon, España
    • Barandela, R. et al., The nearest neighbor rule and the reduction of the training sample size. Proceedings 9th Symposium on Pattern Recognition and Image Analysis, 1, 103-108, Castellon, España, 2001.
    • (2001) Proceedings 9th Symposium on Pattern Recognition and Image Analysis , vol.1 , pp. 103-108
    • Barandela, R.1
  • 6
    • 84995347371 scopus 로고    scopus 로고
    • Myths about Rough Set Theory
    • nov
    • Koczkodaj, W.W. et al. Myths about Rough Set Theory. Comm. of the ACM, vol. 41, no. 11, nov. 1998.
    • (1998) Comm. of the ACM , vol.41 , Issue.11
    • Koczkodaj, W.W.1
  • 7
    • 33846985485 scopus 로고    scopus 로고
    • Komorowski, J. et al. A Rough set perspective on Data and Knowledge. In The Handbook of Data mining and Knowledge discovery, Klosgen, W. and Zytkow, J. (Eds). Oxford University Press, 1999.
    • Komorowski, J. et al. A Rough set perspective on Data and Knowledge. In The Handbook of Data mining and Knowledge discovery, Klosgen, W. and Zytkow, J. (Eds). Oxford University Press, 1999.
  • 9
    • 0035254283 scopus 로고    scopus 로고
    • Rough sets theory for multicriteria decision analysis
    • Greco, S. Et al. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, pp. 1-47, 2001.
    • (2001) European Journal of Operational Research , vol.129 , pp. 1-47
    • Greco, S.1    Et al.2
  • 10
    • 0036738810 scopus 로고    scopus 로고
    • Web mining in Soft Computing framework: Relevance, State of the art and Future Directions
    • Pal, S.K. et al. Web mining in Soft Computing framework: Relevance, State of the art and Future Directions. IEEE Transactions on Neural Networks, 2002.
    • (2002) IEEE Transactions on Neural Networks
    • Pal, S.K.1
  • 11
    • 0001268347 scopus 로고    scopus 로고
    • Rosetta: A rough set toolkit for analysis of data
    • Durham, NC, USA, march 1-5
    • Ohrn, A. and Komorowski, J.. Rosetta: A rough set toolkit for analysis of data. In Proc. Third Int. Join Conference on Information Science, Durham, NC, USA, march 1-5, vol. 3, pp. 403-407. 1997.
    • (1997) Proc. Third Int. Join Conference on Information Science , vol.3 , pp. 403-407
    • Ohrn, A.1    Komorowski, J.2
  • 12
    • 33846960017 scopus 로고    scopus 로고
    • Ohrn, A, ROSETTA Technical Reference Manual. Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway
    • Ohrn, A.. ROSETTA Technical Reference Manual. Department of Computer and Information Science, Norwegian University of Science and Technology, Trondheim, Norway.
  • 17
    • 0037120630 scopus 로고    scopus 로고
    • Economic and financial prediction using rough set model
    • Tay, F.E. and Shen, L.. Economic and financial prediction using rough set model. European Journal of Operational Research 141, pp. 641-659. 2002.
    • (2002) European Journal of Operational Research , vol.141 , pp. 641-659
    • Tay, F.E.1    Shen, L.2
  • 19
    • 0001920729 scopus 로고
    • Similarity Metric Learning for a Variable-Kernel Classifier
    • Lowe, David G.. Similarity Metric Learning for a Variable-Kernel Classifier. Neural Computation., 7-1, pp. 72-85. 1995.
    • (1995) Neural Computation , vol.7 -1 , pp. 72-85
    • Lowe1    David, G.2
  • 20
    • 0343081513 scopus 로고    scopus 로고
    • Randall and Martinez, Tony R. Reduction Techniques for Instance-Based Learning Algorithms
    • Computer Science Department, Brigham Young University. USA
    • Wilson, Randall and Martinez, Tony R. Reduction Techniques for Instance-Based Learning Algorithms. Machine Learning, 38:257-286. Computer Science Department, Brigham Young University. USA 2000.
    • (2000) Machine Learning , vol.38 , pp. 257-286
    • Wilson1
  • 26
    • 33846986658 scopus 로고    scopus 로고
    • Thesis. Department of Computer Science and Artificial Intelligence, Universidad de Granada, Spain. October
    • Cortijo, J.B.. Techniques of approximation II: Non parametric approximation. Thesis. Department of Computer Science and Artificial Intelligence, Universidad de Granada, Spain. October 2001.
    • (2001) Techniques of approximation II: Non parametric approximation
    • Cortijo, J.B.1
  • 27
    • 0032048398 scopus 로고    scopus 로고
    • Computational methods for rough classification and discovery
    • Bell, D. and Guan, J.. Computational methods for rough classification and discovery. Journal of ASIS 49, 5, pp. 403-414, 1998.
    • (1998) Journal of ASIS , vol.49 , Issue.5 , pp. 403-414
    • Bell, D.1    Guan, J.2
  • 28
    • 0032046462 scopus 로고    scopus 로고
    • Feature selection and effective classifiers
    • Deogun, J.S. et al. Feature selection and effective classifiers. Journal of ASIS 49, 5, pp. 423-434. 1998.
    • (1998) Journal of ASIS , vol.49 , Issue.5 , pp. 423-434
    • Deogun, J.S.1
  • 29
    • 32444431723 scopus 로고    scopus 로고
    • A model based on Ant Colony System and Rough Set Theory to Feature Selection
    • June 25-29, Washington, USA
    • Bello, P.R. et al.. A model based on Ant Colony System and Rough Set Theory to Feature Selection. "Genetic and Evolutionary Conference (GECC005)". June 25-29, 2005. Washington, USA
    • (2005) Genetic and Evolutionary Conference (GECC005)
    • Bello, P.R.1
  • 30
    • 21944436714 scopus 로고    scopus 로고
    • Using AGO and Rough Set Theory to Feature Selection
    • June, Lisbon, Portugal
    • Bello, P.R. et al. Using AGO and Rough Set Theory to Feature Selection. 6th WSEAS Evolutionary Computing Conference (EC05). June l6-18, 2005. Lisbon, Portugal.
    • (2005) 6th WSEAS Evolutionary Computing Conference (EC05)
    • Bello, P.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.