-
2
-
-
0003738367
-
-
Kluwer Academic Publishers, Boston
-
C. A. C. Coello, D. A. van Veldhuizen, and G. B. Lamont, Evolutionary algorithms for solving multi-objective problems, Kluwer Academic Publishers, Boston, 2002.
-
(2002)
Evolutionary algorithms for solving multi-objective problems
-
-
Coello, C.A.C.1
van Veldhuizen, D.A.2
Lamont, G.B.3
-
3
-
-
0030211964
-
Bagging predictors
-
L. Breiman, "Bagging predictors," Machine Learning, vol.24, no.2, pp.123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
4
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," Journal of Computer and System Sciences, vol.55, no.1, pp. 119-139, 1997.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
5
-
-
84901459245
-
Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization
-
H. A. Abbass, "Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization," Proc. of Congress on Evolutionary Computation - CEC 2003, pp. 2074-2080, 2003.
-
(2003)
Proc. of Congress on Evolutionary Computation - CEC 2003
, pp. 2074-2080
-
-
Abbass, H.A.1
-
6
-
-
32144456690
-
DIVACE: Diverse and accurate ensemble learning algorithm
-
Springer, Berlin, pp
-
A. Chandra and X. Yao, "DIVACE: Diverse and accurate ensemble learning algorithm," Lecture Notes in Computer Science 3177: Intelligent Data Engineering and Automated Learning - IDEAL 2004, Springer, Berlin, pp.619-625, 2004.
-
(2004)
Lecture Notes in Computer Science 3177: Intelligent Data Engineering and Automated Learning - IDEAL 2004
, pp. 619-625
-
-
Chandra, A.1
Yao, X.2
-
8
-
-
4344623228
-
Neural network regularization and ensembling using multi-objective evolutionary algorithms
-
Y. Jin, T. Okabe, and B. Sendhoff, "Neural network regularization and ensembling using multi-objective evolutionary algorithms," Proc. of Congress on Evolutionary Computation - CEC 2004, pp. 1-8, 2004.
-
(2004)
Proc. of Congress on Evolutionary Computation - CEC 2004
, pp. 1-8
-
-
Jin, Y.1
Okabe, T.2
Sendhoff, B.3
-
9
-
-
33845294631
-
Evolutionary multi-objective optimization approach to constructing neural network ensembles for regression
-
C. A. C. Coello, G. B. Lamont eds, World Scientific, Singapore, pp
-
Y. Jin, T. Okabe, and B. Sendhoff, "Evolutionary multi-objective optimization approach to constructing neural network ensembles for regression," In: C. A. C. Coello, G. B. Lamont (eds) Applications of Multi-Objective Evolutionary Algorithms, World Scientific, Singapore, pp.653-673, 2004.
-
(2004)
Applications of Multi-Objective Evolutionary Algorithms
, pp. 653-673
-
-
Jin, Y.1
Okabe, T.2
Sendhoff, B.3
-
10
-
-
78149347898
-
Feature selection for ensembles: A hierarchical multi-objective genetic algorithm approach
-
L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen, "Feature selection for ensembles: A hierarchical multi-objective genetic algorithm approach," Proc. of 7th International Conference on Document Analysis and Recognition - ICDAR 2003, pp.676-680, 2003.
-
(2003)
Proc. of 7th International Conference on Document Analysis and Recognition - ICDAR 2003
, pp. 676-680
-
-
Oliveira, L.S.1
Sabourin, R.2
Bortolozzi, F.3
Suen, C.Y.4
-
11
-
-
24344486891
-
Multi-objective genetic algorithms to create ensemble of classifiers
-
Springer, Berlin, pp
-
L. S. Oliveira, M. Morita, R. Sabourin, and F. Bortolozzi, "Multi-objective genetic algorithms to create ensemble of classifiers," Lecture Notes in Computer Science 3410: Evolutionary Multi-Criterion Optimization - EMO 2005, Springer, Berlin, pp.592-606, 2005.
-
(2005)
Lecture Notes in Computer Science 3410: Evolutionary Multi-Criterion Optimization - EMO 2005
, pp. 592-606
-
-
Oliveira, L.S.1
Morita, M.2
Sabourin, R.3
Bortolozzi, F.4
-
12
-
-
35248819821
-
Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers
-
Springer, Berlin, pp
-
H. Ishibuchi and T. Yamamoto, "Evolutionary multiobjective optimization for generating an ensemble of fuzzy rule-based classifiers," Lecture Notes in Computer Science 2723: Genetic and Evolutionary Computation - GECCO 2003, Springer, Berlin, pp. 1077-1088, 2003.
-
(2003)
Lecture Notes in Computer Science 2723: Genetic and Evolutionary Computation - GECCO 2003
, pp. 1077-1088
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
13
-
-
0000919523
-
Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems
-
H. Ishibuchi, T. Murata, and I. B. Turksen, "Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems," Fuzzy Sets and Systems, vol.89, no.2, pp. 135-150, 1997.
-
(1997)
Fuzzy Sets and Systems
, vol.89
, Issue.2
, pp. 135-150
-
-
Ishibuchi, H.1
Murata, T.2
Turksen, I.B.3
-
14
-
-
0035426682
-
Three-objective genetics-based machine learning for linguistic rule extraction
-
H. Ishibuchi, T. Nakashima, and T. Murata, "Three-objective genetics-based machine learning for linguistic rule extraction," Information Sciences, vol.136, no.1-4, pp.109-133, 2001.
-
(2001)
Information Sciences
, vol.136
, Issue.1-4
, pp. 109-133
-
-
Ishibuchi, H.1
Nakashima, T.2
Murata, T.3
-
15
-
-
21144433915
-
Effects of three-objective genetic rule selection on the generalization ability of fuzzy rule-based systems
-
Springer, Berlin, pp
-
H. Ishibuchi and T. Yamamoto, "Effects of three-objective genetic rule selection on the generalization ability of fuzzy rule-based systems," Lecture Notes in Computer Science 2632: Evolutionary Multi-Criterion Optimization - EMO 2003, Springer, Berlin, pp.608-622, 2003.
-
(2003)
Lecture Notes in Computer Science 2632: Evolutionary Multi-Criterion Optimization - EMO 2003
, pp. 608-622
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
16
-
-
0346781550
-
Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
-
H. Ishibuchi and T. Yamamoto, "Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining," Fuzzy Sets and Systems, vol.141, no.1, pp.59-88, 2004.
-
(2004)
Fuzzy Sets and Systems
, vol.141
, Issue.1
, pp. 59-88
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
17
-
-
33645386802
-
Evolutionary multiobjective knowledge extraction for high-dimensional pattern classification problems
-
Springer, Berlin, pp
-
H. Ishibuchi and S. Namba, "Evolutionary multiobjective knowledge extraction for high-dimensional pattern classification problems," Lecture Notes in Computer Science 3242: Parallel Problem Solving from Nature - PPSN VIII, Springer, Berlin, pp.1123-1132, 2003.
-
(2003)
Lecture Notes in Computer Science 3242: Parallel Problem Solving from Nature - PPSN
, vol.8
, pp. 1123-1132
-
-
Ishibuchi, H.1
Namba, S.2
-
18
-
-
0036530772
-
A fast and elitist multiobjective genetic algorithm: NSGA-II
-
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. on Evolutionary Computation, vol.6, no.2, pp. 182-197, 2002.
-
(2002)
IEEE Trans. on Evolutionary Computation
, vol.6
, Issue.2
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
Meyarivan, T.4
-
19
-
-
23944451642
-
-
Springer, Berlin
-
H. Ishibuchi, T. Nakashima, and M. Nii, Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining, Springer, Berlin, 2004.
-
(2004)
Classification and modeling with linguistic information granules: Advanced approaches to linguistic data mining
-
-
Ishibuchi, H.1
Nakashima, T.2
Nii, M.3
-
20
-
-
33645395972
-
Rule weight specification in fuzzy rule-based classification systems
-
in press
-
H. Ishibuchi and T. Yamamoto, "Rule weight specification in fuzzy rule-based classification systems, IEEE Trans, on Fuzzy Systems (in press).
-
IEEE Trans, on Fuzzy Systems
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
21
-
-
3543091439
-
Comparison of heuristic criteria for fuzzy rule selection in classification problems
-
H. Ishibuchi and T. Yamamoto, "Comparison of heuristic criteria for fuzzy rule selection in classification problems," Fuzzy Optimization and Decision Making, vol.3, no.2, pp.119-139, 2004.
-
(2004)
Fuzzy Optimization and Decision Making
, vol.3
, Issue.2
, pp. 119-139
-
-
Ishibuchi, H.1
Yamamoto, T.2
-
22
-
-
0033116171
-
SLAVE: A genetic learning system based on an iterative approach
-
A. Gonzalez and R. Perez, "SLAVE: A genetic learning system based on an iterative approach," IEEE Trans, on Fuzzy Systems, vol.7, no.2, pp.176-191, 1999.
-
(1999)
IEEE Trans, on Fuzzy Systems
, vol.7
, Issue.2
, pp. 176-191
-
-
Gonzalez, A.1
Perez, R.2
|