-
3
-
-
0023699917
-
-
K. E. Pickering, R. R. Dickerson, G. J. Huffman, J. F. Boatman, A. Schanot, J. Geophys. Res. 93, 759 (1988).
-
(1988)
J. Geophys. Res
, vol.93
, pp. 759
-
-
Pickering, K.E.1
Dickerson, R.R.2
Huffman, G.J.3
Boatman, J.F.4
Schanot, A.5
-
5
-
-
0036541755
-
-
W. J. Collins, R. G. Derwent, C. E. Johnson, D. S. Stevenson, Q. J. R. Metearol. Soc. 128, 991 (2002).
-
(2002)
Q. J. R. Metearol. Soc
, vol.128
, pp. 991
-
-
Collins, W.J.1
Derwent, R.G.2
Johnson, C.E.3
Stevenson, D.S.4
-
7
-
-
0024193684
-
-
S. A. Rutledge, R. A. Houze, M. I. Biggerstaff, T. Matejka, Mon. Weather Rev. 116, 1409 (1988).
-
(1988)
Mon. Weather Rev
, vol.116
, pp. 1409
-
-
Rutledge, S.A.1
Houze, R.A.2
Biggerstaff, M.I.3
Matejka, T.4
-
8
-
-
0033589855
-
-
H. Huntrieser, H. Schlager, C. Feigl, H. Holler, J. Geophys. Res. 103, 28247 (1998).
-
(1998)
J. Geophys. Res
, vol.103
, pp. 28247
-
-
Huntrieser, H.1
Schlager, H.2
Feigl, C.3
Holler, H.4
-
11
-
-
24044510829
-
-
L. Jaeglé, L. Steinberger, R. V. Martin, K. Chance, Faraday Discuss. 130, 407 (2005).
-
(2005)
Faraday Discuss
, vol.130
, pp. 407
-
-
Jaeglé, L.1
Steinberger, L.2
Martin, R.V.3
Chance, K.4
-
12
-
-
33746886195
-
-
A. J. DeCaria, K. E. Pickering, G. L. Stenchikov, L. E. Ott, J. Geophys. Res. 110, D14303 (2005).
-
(2005)
J. Geophys. Res
, vol.110
-
-
DeCaria, A.J.1
Pickering, K.E.2
Stenchikov, G.L.3
Ott, L.E.4
-
14
-
-
0346911877
-
-
10.1029/2003GL017644
-
M. G. Lawrence, R. von Kuhlmann, M. Salzmann, P. J. Rasch, Geophys. Res. Lett. 30, 10.1029/2003GL017644 (2003).
-
(2003)
Geophys. Res. Lett
, vol.30
-
-
Lawrence, M.G.1
von Kuhlmann, R.2
Salzmann, M.3
Rasch, P.J.4
-
15
-
-
0346639325
-
-
M. Gauss et al., J. Geophys. Res. 108, 10.1029/2002JD002624 (2003).
-
M. Gauss et al., J. Geophys. Res. 108, 10.1029/2002JD002624 (2003).
-
-
-
-
22
-
-
33749498660
-
-
J. D. Crounse, K. A. McKinney, A. J. Kwan, P. O. Wennberg, Anal. Chem. 78, 6726 (2006).
-
(2006)
Anal. Chem
, vol.78
, pp. 6726
-
-
Crounse, J.D.1
McKinney, K.A.2
Kwan, A.J.3
Wennberg, P.O.4
-
26
-
-
0023187489
-
-
G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, J. Geophys. Res. 92, 2071 (1987).
-
(1987)
J. Geophys. Res
, vol.92
, pp. 2071
-
-
Sachse, G.W.1
Hill, G.F.2
Wade, L.O.3
Perry, M.G.4
-
28
-
-
33846995734
-
-
H. B. Singh, W. H. Brune, J. H. Crawford, D. J. Jacob, P. B. Russell, J. Geophys. Res. 111, D24501 (2006).
-
(2006)
J. Geophys. Res
, vol.111
-
-
Singh, H.B.1
Brune, W.H.2
Crawford, J.H.3
Jacob, D.J.4
Russell, P.B.5
-
33
-
-
0033586198
-
-
D. S. Cohan, M. G. Schultz, D. J. Jacob, B. G. Heikes, D. R. Blake, J. Geophys. Res. 104, 5717 (1999).
-
(1999)
J. Geophys. Res
, vol.104
, pp. 5717
-
-
Cohan, D.S.1
Schultz, M.G.2
Jacob, D.J.3
Heikes, B.G.4
Blake, D.R.5
-
42
-
-
0030234133
-
-
D. A. Hauglustaine, B. A. Ridley, S. Solomon, P. G. Hess, S. Madronich, Geophys. Res. Lett. 23, 2609 (1996).
-
(1996)
Geophys. Res. Lett
, vol.23
, pp. 2609
-
-
Hauglustaine, D.A.1
Ridley, B.A.2
Solomon, S.3
Hess, P.G.4
Madronich, S.5
-
44
-
-
11144357129
-
-
H. Huntrieser et al., J. Geophys. Res. 107, 10.1029/2000JD000209 (2002).
-
H. Huntrieser et al., J. Geophys. Res. 107, 10.1029/2000JD000209 (2002).
-
-
-
-
45
-
-
33846987274
-
-
See supporting material on Science Online.
-
See supporting material on Science Online.
-
-
-
-
48
-
-
0029530915
-
-
T. Hauf, P. Schulte, R. Alheit, H. Schlager, J. Geophys. Res. 100, 22957 (1995).
-
(1995)
J. Geophys. Res
, vol.100
, pp. 22957
-
-
Hauf, T.1
Schulte, P.2
Alheit, R.3
Schlager, H.4
-
49
-
-
33846993130
-
-
Net ozone concentration change of 0 nmol mol-1 day -1 could be achieved if the air parcel (i) subsided to where H 2O abundances were large enough to provide a sink of O3 through O1D that balanced production from NO, HO2 (∼6 km, ii) entrained air containing lower O3 mixing ratios, or (iii) contained additional O3 loss terms beyond NOx, HO x, and H2O via O1D removal, To match the deviation between the model and measurement, we would require an additional 2 to 3 nmol mol-1 day-1 of chemical ozone loss. In order for mixing to explain the deviation, air of lower O3 would need to be mixed into the air parcel. As shown in Fig. 5B, the only air in the UT containing significantly less O3 is that which is pumped directly from the PBL. Although mixing fresh and aged outflow could help to explain the discrepancy in
-
3, it is inconsistent with the observed decay in CO at long times (2 to 5 days).
-
-
-
-
52
-
-
17144458003
-
-
K. E. Pickering, Y. S. Wang, W. K. Tao, C. Price, J. F. Muller, J. Geophys. Res. 103, 31203 (1998).
-
(1998)
J. Geophys. Res
, vol.103
, pp. 31203
-
-
Pickering, K.E.1
Wang, Y.S.2
Tao, W.K.3
Price, C.4
Muller, J.F.5
-
53
-
-
33846987273
-
-
W. B. Rossow, http://isccp.giss.nasa.gov/products/isccpDsets.html (2006).
-
(2006)
-
-
Rossow, W.B.1
-
54
-
-
33847004099
-
-
We used 10-day back-trajectories to National Weather Service Global Forecast System (GFS, derived convection measurements and NLDN-measured lightning strikes to assess the fraction of time that the DC-8 sampled either convection- or lightning-influenced air. Using the GFS statistics, we calculated that 63% of the sampled air on INTEX-NA had encountered convection and ∼57% had been influenced by lightning during the past 2 days. When considering the entire INTEX-NA sampling domain (both in space and time, convection was present in 12.5% of the grid points. This is substantially smaller than the percentage of observations within 6 hours of convection (21.4, which suggests that the DC-8 had a positive bias toward sampling fresh convection. This bias is reflected in the sharp drop in population between day 1 and day 2 Fig. 6A, Correcting for this bias had little effect on our assessment of the fraction of air less than 2 days old, lowering our results from 0.43, 0.56, 0.69, and
-
We used 10-day back-trajectories to National Weather Service Global Forecast System (GFS) - derived convection measurements and NLDN-measured lightning strikes to assess the fraction of time that the DC-8 sampled either convection- or lightning-influenced air. Using the GFS statistics, we calculated that 63% of the sampled air on INTEX-NA had encountered convection and ∼57% had been influenced by lightning during the past 2 days. When considering the entire INTEX-NA sampling domain (both in space and time), convection was present in 12.5% of the grid points. This is substantially smaller than the percentage of observations within 6 hours of convection (21.4%), which suggests that the DC-8 had a positive bias toward sampling fresh convection. This bias is reflected in the sharp drop in population between day 1 and day 2 (Fig. 6A). Correcting for this bias had little effect on our assessment of the fraction of air less than 2 days old, lowering our results from 0.43, 0.56, 0.69, and 0.43 to 0.38, 0.50, 0.62, and 0.39 at 8, 9, 10, and 11 km, respectively.
-
-
-
-
55
-
-
33846945861
-
-
We thank the flight and ground crews of the NASA DC-8 aircraft and the entire INTEX-NA science team for their contributions during the 2004 intensive field campaign; A. M. Thompson, I. Folkins, M. G. Lawrence, and D. Allen for helpful discussions; T. Kucsera for help with the GEO5-4 calculations; and W. H. Brune and X. Ren for OH and HO2 data. NLDN data were collected by Vaisala-Thunderstorm and provided to the INTEX Science Team by the Global Hydrology Resource Center at NASA Marshall Space Flight Center. Work at UC Berkeley was supported by NASA grants NNG05GH196 and NAG5-13668. The INTEX-NA field program was supported by the NASA-ESE Tropospheric Chemistry Program
-
2 data. NLDN data were collected by Vaisala-Thunderstorm and provided to the INTEX Science Team by the Global Hydrology Resource Center at NASA Marshall Space Flight Center. Work at UC Berkeley was supported by NASA grants NNG05GH196 and NAG5-13668. The INTEX-NA field program was supported by the NASA-ESE Tropospheric Chemistry Program.
-
-
-
|