-
1
-
-
0025210711
-
MultiquadricA scattered data approximation scheme with applications to computational fluid dynamics II
-
Kansa E.J. MultiquadricA scattered data approximation scheme with applications to computational fluid dynamics II. Comput. Math. Appl. 19 (1990) 147-161
-
(1990)
Comput. Math. Appl.
, vol.19
, pp. 147-161
-
-
Kansa, E.J.1
-
3
-
-
0034775741
-
Fast solution of the radial basis function interpolation methods: domain decomposition methods
-
Beatson W., Cherrie J.B., and Mouat T. Fast solution of the radial basis function interpolation methods: domain decomposition methods. SIAM J. Sci. Comp. 22 (2000) 1717-1740
-
(2000)
SIAM J. Sci. Comp.
, vol.22
, pp. 1717-1740
-
-
Beatson, W.1
Cherrie, J.B.2
Mouat, T.3
-
4
-
-
3142763671
-
Additive Schwarz domain decomposition with radial basis approximation
-
Hon Y.C., and Wu Z. Additive Schwarz domain decomposition with radial basis approximation. Int. J. Appl. Math. 4 1 (2000) 81-98
-
(2000)
Int. J. Appl. Math.
, vol.4
, Issue.1
, pp. 81-98
-
-
Hon, Y.C.1
Wu, Z.2
-
5
-
-
2342536532
-
Domain decomposition for radial basis meshless methods
-
Hon Y.C., and Li J. Domain decomposition for radial basis meshless methods. Numer. Meth. Part. D. E. 20 3 (2004) 450-462
-
(2004)
Numer. Meth. Part. D. E.
, vol.20
, Issue.3
, pp. 450-462
-
-
Hon, Y.C.1
Li, J.2
-
6
-
-
0037215232
-
Overlapping domain decomposition method by radial basis functions
-
Zhou X., Hon Y.C., and Li J. Overlapping domain decomposition method by radial basis functions. Appl. Numer. Math. 44 1-2 (2003) 241-255
-
(2003)
Appl. Numer. Math.
, vol.44
, Issue.1-2
, pp. 241-255
-
-
Zhou, X.1
Hon, Y.C.2
Li, J.3
-
7
-
-
33846936413
-
-
Leevan Ling, Edward J. Kansa, A least-squares preconditioner for radial basis functions collocation methods, Adv. Comp. Math. (Preprint), 2003.
-
-
-
-
8
-
-
33846921463
-
-
Gregory E. Fasshauer, Approximate moving least-squares approximation with compactly supported radial weights, in: Numerical Algorithms, Lecture Notes in Computer Science and Engineering, vol. 26, 2002, pp. 105-116.
-
-
-
-
9
-
-
23044522578
-
Adaptive greedy techniques for approximate solution of large RBF systems
-
Schaback R., and Wendland H. Adaptive greedy techniques for approximate solution of large RBF systems. Numerical Algorithms (2000)
-
(2000)
Numerical Algorithms
-
-
Schaback, R.1
Wendland, H.2
-
10
-
-
33846934367
-
-
L. Ling, M.R. Trummer, Multiquradric collocation method with integral formulation for boundary layer problems, Comp. Math. Appl. (Preprint), 2003.
-
-
-
-
11
-
-
85128507483
-
-
Mira Bozzini, Licia Lenarduzzi, R. Rossini, Robert Schaback, Interpolation by Basis Functions of Different Scales and Shapes, Calcolo 41 (2004) 77-87.
-
-
-
-
12
-
-
0034173976
-
Circumventing the ill-conditioning problem with multiquadric radial basis functions: application to elliptic partial differential equations
-
Kansa E.J., and Hon Y.C. Circumventing the ill-conditioning problem with multiquadric radial basis functions: application to elliptic partial differential equations. Comput. Math. Appl. 39 (2000) 123-137
-
(2000)
Comput. Math. Appl.
, vol.39
, pp. 123-137
-
-
Kansa, E.J.1
Hon, Y.C.2
-
13
-
-
0033115928
-
Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme
-
Wong A.S.M., Hon Y.C., Li T.S., Chung S.L., and Kansa E.J. Multizone decomposition for simulation of time-dependent problems using the multiquadric scheme. Comput. Math. Appl. 37 (1999) 23-43
-
(1999)
Comput. Math. Appl.
, vol.37
, pp. 23-43
-
-
Wong, A.S.M.1
Hon, Y.C.2
Li, T.S.3
Chung, S.L.4
Kansa, E.J.5
-
15
-
-
0036467593
-
Boundary knot method: a meshless, exponential convergence, integration-free, and boundary-only RBF technique
-
Chen W., and Tanaka M. Boundary knot method: a meshless, exponential convergence, integration-free, and boundary-only RBF technique. Comput. Math. Appl. 43 (2002) 379-391
-
(2002)
Comput. Math. Appl.
, vol.43
, pp. 379-391
-
-
Chen, W.1
Tanaka, M.2
-
16
-
-
3142684323
-
Using compactly supported radial basis functions to solve partial differential equations
-
Chen C., Brebbia C.A., and Pepper D.W. (Eds), WitPress, Southampton, Boston
-
Schaback R., and Wendland H. Using compactly supported radial basis functions to solve partial differential equations. In: Chen C., Brebbia C.A., and Pepper D.W. (Eds). Boundary Element Technology XIII (1999), WitPress, Southampton, Boston 311C324
-
(1999)
Boundary Element Technology XIII
-
-
Schaback, R.1
Wendland, H.2
-
17
-
-
0033465031
-
Meshless Galerkin methods using radial basis functions
-
Wendland H. Meshless Galerkin methods using radial basis functions. Math. Comput. 68 228 (2002) 1521-1531
-
(2002)
Math. Comput.
, vol.68
, Issue.228
, pp. 1521-1531
-
-
Wendland, H.1
-
18
-
-
51649133223
-
Hermite-Birkhoff interpolation of scattered data by radial basis function
-
Wu Z. Hermite-Birkhoff interpolation of scattered data by radial basis function. Approx. Theory Appl. 8 2 (1992)
-
(1992)
Approx. Theory Appl.
, vol.8
, Issue.2
-
-
Wu, Z.1
-
19
-
-
14544290310
-
Local error estimates for radial basis function interpolation of scattered data
-
Wu Z., and Schaback R. Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13 (1993) 13-27
-
(1993)
IMA J. Numer. Anal.
, vol.13
, pp. 13-27
-
-
Wu, Z.1
Schaback, R.2
-
20
-
-
0001739142
-
The theory of radial basis function approximation in 1990
-
Light W. (Ed), Oxford Science Publications, Oxford
-
Powell M.J.D. The theory of radial basis function approximation in 1990. In: Light W. (Ed). Advances in Numerical Analysis vol. II (1992), Oxford Science Publications, Oxford
-
(1992)
Advances in Numerical Analysis
, vol.II
-
-
Powell, M.J.D.1
-
21
-
-
84966244353
-
Multivariate interpolation and conditionally positive definite functions
-
Madych W.R., and Nelson S.A. Multivariate interpolation and conditionally positive definite functions. Math. Comp. 54 (1990) 211-230
-
(1990)
Math. Comp.
, vol.54
, pp. 211-230
-
-
Madych, W.R.1
Nelson, S.A.2
-
22
-
-
30844437566
-
Characterization and construction of radial basis functions
-
Dyn N., Leviatan D., and Levin D. (Eds), Cambridge University Press, Cambridge
-
Schaback R., and Wendland H. Characterization and construction of radial basis functions. In: Dyn N., Leviatan D., and Levin D. (Eds). Eilat Proceedings (2000), Cambridge University Press, Cambridge
-
(2000)
Eilat Proceedings
-
-
Schaback, R.1
Wendland, H.2
-
23
-
-
33846907986
-
-
L. Mai-Cao, T. Tran-Cong, Solving time-dependent PDEs with a meshless IRBFN-based method, in: Proceedings of the International Workshop on MeshFree Methods, 2003.
-
-
-
-
24
-
-
33845398201
-
-
Yunxin Zhang, Yongji Tan, Convergence of meshless Petrov-Galerkin method using radial basis functions, Appl. Math. Comp., in press, doi:10.1016/j.amc.2006.05.085.
-
-
-
-
25
-
-
33344475702
-
Solve partial differential equations by meshless subdomains method combined with RBFs
-
Zhang Y., and Tan Y. Solve partial differential equations by meshless subdomains method combined with RBFs. Appl. Math. Compt. 174 (2006) 700-709
-
(2006)
Appl. Math. Compt.
, vol.174
, pp. 700-709
-
-
Zhang, Y.1
Tan, Y.2
-
26
-
-
33646191542
-
Convergence of general meshless Schwarz method using radial basis functions
-
Zhang Y., and Tan Y. Convergence of general meshless Schwarz method using radial basis functions. Appl. Numer. Meth. 56 (2006) 916-936
-
(2006)
Appl. Numer. Meth.
, vol.56
, pp. 916-936
-
-
Zhang, Y.1
Tan, Y.2
-
27
-
-
33846921953
-
Convergence order of meshless collocation methods using radial
-
Franke C., and Schabake R. Convergence order of meshless collocation methods using radial. Basis Funct. (1997)
-
(1997)
Basis Funct.
-
-
Franke, C.1
Schabake, R.2
-
28
-
-
0000136089
-
Multivariate compactly supported positive definite radial functions
-
Wu Z. Multivariate compactly supported positive definite radial functions. Adv. Comp. Math. 4 (1995) 283-292
-
(1995)
Adv. Comp. Math.
, vol.4
, pp. 283-292
-
-
Wu, Z.1
-
29
-
-
0346847275
-
Piecewise polynomial,positive definite and compactly supported radial functions of minimal degree
-
Wendland H. Piecewise polynomial,positive definite and compactly supported radial functions of minimal degree. Adv. Comp. Math. 4 (1995) 283-292
-
(1995)
Adv. Comp. Math.
, vol.4
, pp. 283-292
-
-
Wendland, H.1
-
30
-
-
0035606001
-
A new class of radial basis functions with compact support
-
Buhmann M.D. A new class of radial basis functions with compact support. Math. Comput. 70 (2001) 307-318
-
(2001)
Math. Comput.
, vol.70
, pp. 307-318
-
-
Buhmann, M.D.1
|