메뉴 건너뛰기




Volumn 123, Issue 2, 2007, Pages 388-402

Constructing one-parameter families of elliptic curves with moderate rank

Author keywords

Elliptic curves; Mordell Weil rank; Rational elliptic surfaces

Indexed keywords


EID: 33846890676     PISSN: 0022314X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jnt.2006.07.002     Document Type: Article
Times cited : (16)

References (18)
  • 1
    • 0000574398 scopus 로고    scopus 로고
    • Une courbe elliptique définie sur Q de rang ≥22
    • Fermigier S. Une courbe elliptique définie sur Q de rang ≥22. Acta Arith. 82 4 (1997) 359-363
    • (1997) Acta Arith. , vol.82 , Issue.4 , pp. 359-363
    • Fermigier, S.1
  • 2
    • 0001511662 scopus 로고
    • Courbes elliptiques de rang ≥ 11 sur Q (T)
    • Mestre J. Courbes elliptiques de rang ≥ 11 sur Q (T). C. R. Acad. Sci. Paris Ser. 1 313 (1991) 139-142
    • (1991) C. R. Acad. Sci. Paris Ser. 1 , vol.313 , pp. 139-142
    • Mestre, J.1
  • 3
    • 0000075341 scopus 로고
    • Courbes elliptiques de rang ≥ 12 sur Q (T)
    • Mestre J. Courbes elliptiques de rang ≥ 12 sur Q (T). C. R. Acad. Sci. Paris Ser. 1 313 (1991) 171-174
    • (1991) C. R. Acad. Sci. Paris Ser. 1 , vol.313 , pp. 171-174
    • Mestre, J.1
  • 5
    • 33750885661 scopus 로고    scopus 로고
    • Variation in the number of points on elliptic curves and applications to excess rank
    • Miller S.J. Variation in the number of points on elliptic curves and applications to excess rank. C. R. Math. Rep. Acad. Sci. Canada 27 4 (2005) 111-120
    • (2005) C. R. Math. Rep. Acad. Sci. Canada , vol.27 , Issue.4 , pp. 111-120
    • Miller, S.J.1
  • 6
    • 33846877271 scopus 로고    scopus 로고
    • R. Miranda, The basic theory of elliptic surfaces, Dottorato di Ricerca in Matematica, Dipartimento di Matematica dell'Università di Pisa, ETS Editrice, 1989
  • 9
    • 0039703175 scopus 로고
    • Construction of high-rank elliptic curves
    • Nagao K. Construction of high-rank elliptic curves. Kobe J. Math. 11 (1994) 211-219
    • (1994) Kobe J. Math. , vol.11 , pp. 211-219
    • Nagao, K.1
  • 10
    • 0030646965 scopus 로고    scopus 로고
    • Q (T)-rank of elliptic curves and certain limit coming from the local points
    • Nagao K. Q (T)-rank of elliptic curves and certain limit coming from the local points. Manuscripta Math. 92 (1997) 13-32
    • (1997) Manuscripta Math. , vol.92 , pp. 13-32
    • Nagao, K.1
  • 11
    • 0032371702 scopus 로고    scopus 로고
    • On the rank of an elliptic surface
    • Rosen M., and Silverman J. On the rank of an elliptic surface. Invent. Math. 133 (1998) 43-67
    • (1998) Invent. Math. , vol.133 , pp. 43-67
    • Rosen, M.1    Silverman, J.2
  • 14
    • 84972577415 scopus 로고
    • Construction of elliptic curves with high-rank via the invariants of the Weyl groups
    • Shioda T. Construction of elliptic curves with high-rank via the invariants of the Weyl groups. J. Math. Soc. Japan 43 (1991) 673-719
    • (1991) J. Math. Soc. Japan , vol.43 , pp. 673-719
    • Shioda, T.1
  • 15
    • 0003357475 scopus 로고
    • The Arithmetic of Elliptic Curves
    • Springer-Verlag, Berlin
    • Silverman J. The Arithmetic of Elliptic Curves. Grad. Texts in Math. vol. 106 (1986), Springer-Verlag, Berlin
    • (1986) Grad. Texts in Math. , vol.106
    • Silverman, J.1
  • 16
    • 0003236499 scopus 로고
    • Advanced Topics in the Arithmetic of Elliptic Curves
    • Springer-Verlag, Berlin
    • Silverman J. Advanced Topics in the Arithmetic of Elliptic Curves. Grad. Texts in Math. vol. 151 (1994), Springer-Verlag, Berlin
    • (1994) Grad. Texts in Math. , vol.151
    • Silverman, J.1
  • 17
    • 0002526955 scopus 로고
    • Algebraic cycles and the pole of zeta functions
    • Harper and Row, New York
    • Tate J. Algebraic cycles and the pole of zeta functions. Arithmetical Algebraic Geometry (1965), Harper and Row, New York 93-110
    • (1965) Arithmetical Algebraic Geometry , pp. 93-110
    • Tate, J.1
  • 18
    • 4344658564 scopus 로고    scopus 로고
    • Elliptic Curves: Number Theory and Cryptography
    • Chapman & Hall
    • Washington L. Elliptic Curves: Number Theory and Cryptography. Discrete Math. Appl. (2003), Chapman & Hall
    • (2003) Discrete Math. Appl.
    • Washington, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.