메뉴 건너뛰기




Volumn 52, Issue 6-7, 2006, Pages 1021-1030

A Numerical Method for Solving of a Nonlinear Inverse Diffusion Problem

Author keywords

Diffusion coefficient; Existence; Finite difference method; Least squares method; Nonlinear inverse diffusion problem; Uniqueness

Indexed keywords

ALGORITHMS; DIFFUSION; FINITE DIFFERENCE METHOD; INVERSE PROBLEMS; LEAST SQUARES APPROXIMATIONS; PROBLEM SOLVING; THEOREM PROVING;

EID: 33846885433     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2006.03.026     Document Type: Article
Times cited : (35)

References (15)
  • 1
    • 0019075711 scopus 로고
    • An inverse problem for a nonlinear diffusion equation
    • Cannon J.R., and Duchateau P. An inverse problem for a nonlinear diffusion equation. SIAM J. Appl. Math. 39 2 (1980) 272-289
    • (1980) SIAM J. Appl. Math. , vol.39 , Issue.2 , pp. 272-289
    • Cannon, J.R.1    Duchateau, P.2
  • 2
    • 0019624801 scopus 로고
    • Monotonicity and uniqueness results in identifying an unknown coefficient in a nonlinear diffusion equation
    • Duchateau P. Monotonicity and uniqueness results in identifying an unknown coefficient in a nonlinear diffusion equation. SIAM J. Appl. Math. 41 2 (1981) 310-323
    • (1981) SIAM J. Appl. Math. , vol.41 , Issue.2 , pp. 310-323
    • Duchateau, P.1
  • 5
    • 26044460469 scopus 로고    scopus 로고
    • Application of finite difference method to analysis an ill-posed problem
    • Shidfar A., and Pourgholi R. Application of finite difference method to analysis an ill-posed problem. Applied Mathematics and Computation 168 2 (15 September 2005) 1400-1408
    • (2005) Applied Mathematics and Computation , vol.168 , Issue.2 , pp. 1400-1408
    • Shidfar, A.1    Pourgholi, R.2
  • 6
    • 25644451088 scopus 로고    scopus 로고
    • Numerical solution of inverse heat conduction problem with nonstationary measurements
    • Shidfar A., and Karamali G.R. Numerical solution of inverse heat conduction problem with nonstationary measurements. Applied Mathematics and Computation 168 1 (1 September 2005) 540-548
    • (2005) Applied Mathematics and Computation , vol.168 , Issue.1 , pp. 540-548
    • Shidfar, A.1    Karamali, G.R.2
  • 7
    • 33846863243 scopus 로고
    • An inverse problem for a linear diffusion equation with nonlinear boundary condition
    • Shidfar A., and Nikoofar H.R. An inverse problem for a linear diffusion equation with nonlinear boundary condition. Appl. Math. Lett. 2 4 (1989) 385-388
    • (1989) Appl. Math. Lett. , vol.2 , Issue.4 , pp. 385-388
    • Shidfar, A.1    Nikoofar, H.R.2
  • 8
    • 84972551525 scopus 로고
    • Determination of an unknown radiation term in heat conduction problem
    • Shidfar A. Determination of an unknown radiation term in heat conduction problem. Differential and Integral Equations 3 (1990) 1225-1229
    • (1990) Differential and Integral Equations , vol.3 , pp. 1225-1229
    • Shidfar, A.1
  • 9
    • 0010676133 scopus 로고
    • Parameter determination in parabolic partial differential equations from overspecified boundary data
    • Cannon J.R., and Zachmann D. Parameter determination in parabolic partial differential equations from overspecified boundary data. Int. J. Engng. Sci. 20 (1982) 779-788
    • (1982) Int. J. Engng. Sci. , vol.20 , pp. 779-788
    • Cannon, J.R.1    Zachmann, D.2
  • 10
    • 0023869275 scopus 로고
    • Identifying an unknown term in an inverse problem of linear diffusion equations
    • Shidfar A. Identifying an unknown term in an inverse problem of linear diffusion equations. Int. J. Eng. Sci. 26 7 (1988) 753-755
    • (1988) Int. J. Eng. Sci. , vol.26 , Issue.7 , pp. 753-755
    • Shidfar, A.1
  • 11
    • 0000552753 scopus 로고
    • Determining unknown coefficients in a nonlinear heat conduction problem
    • Cannon J.R., and Duchateau P. Determining unknown coefficients in a nonlinear heat conduction problem. SIAM J. Appl. Math. 24 3 (1973) 298-314
    • (1973) SIAM J. Appl. Math. , vol.24 , Issue.3 , pp. 298-314
    • Cannon, J.R.1    Duchateau, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.