-
1
-
-
33846846870
-
-
George M. Bergman, Generating infinite symmetric groups, to appear, J. London Math. Soc.. Preprint version, 8 pp.: http://math.berkeley.edu/ ~ gbergman/papers/Sym Omega: 1.{tex,dvi} , arXiv:math.GR/0401304 .
-
George M. Bergman, Generating infinite symmetric groups, to appear, J. London Math. Soc.. Preprint version, 8 pp.: http://math.berkeley.edu/ ~ gbergman/papers/Sym Omega: 1.{tex,dvi} , arXiv:math.GR/0401304 .
-
-
-
-
2
-
-
33846845381
-
-
Meenaxi Bhattacharjee, Dugald Macpherson, Rögnvaldur G. Möller and Peter M. Neumann, Notes on infinite permutation groups, Texts and Readings in Mathematics, 12, Hindustan Book Agency, New Delhi, and Lecture Notes in Mathematics, 1698, Springer-Verlag, 1997. MR 99e:20003.
-
Meenaxi Bhattacharjee, Dugald Macpherson, Rögnvaldur G. Möller and Peter M. Neumann, Notes on infinite permutation groups, Texts and Readings in Mathematics, 12, Hindustan Book Agency, New Delhi, and Lecture Notes in Mathematics, 1698, Springer-Verlag, 1997. MR 99e:20003.
-
-
-
-
3
-
-
0032384992
-
Supplements of bounded permutation groups
-
MR 99b:20007
-
Stephen Bigelow, Supplements of bounded permutation groups, J. Symbolic Logic 63 (1998) 89-102. MR 99b:20007.
-
(1998)
J. Symbolic Logic
, vol.63
, pp. 89-102
-
-
Bigelow, S.1
-
4
-
-
0141771926
-
Generating countable sets of permutations
-
MR 96a:20005
-
Fred Galvin, Generating countable sets of permutations, J. London Math. Soc. (2) 51 (1995) 230-242. MR 96a:20005.
-
(1995)
J. London Math. Soc. (2)
, vol.51
, pp. 230-242
-
-
Galvin, F.1
-
5
-
-
84960610864
-
-
H. D. Macpherson and Peter M. Neumann, Subgroups of infinite symmetric groups, J. London Math. Soc. (2) 42 (1990) 64-84. MR 92d:20006. (Note: It is shown in [3] that Theorem 1.2 of this paper requires additional set-theoretic hypotheses for some κ.)
-
H. D. Macpherson and Peter M. Neumann, Subgroups of infinite symmetric groups, J. London Math. Soc. (2) 42 (1990) 64-84. MR 92d:20006. (Note: It is shown in [3] that Theorem 1.2 of this paper requires additional set-theoretic hypotheses for some κ.)
-
-
-
-
6
-
-
33846806284
-
-
Zachary Mesyan, Generating subrings of endomorphism rings using small numbers of elements (title tentative), preprint, April 2005, 13 pp. (Author's e-mail address: zak@math.berkeley.edu .)
-
Zachary Mesyan, Generating subrings of endomorphism rings using small numbers of elements (title tentative), preprint, April 2005, 13 pp. (Author's e-mail address: zak@math.berkeley.edu .)
-
-
-
-
7
-
-
84968516156
-
-
Oystein Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951) 307-314. MR 12, 671e.
-
Oystein Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951) 307-314. MR 12, 671e.
-
-
-
-
8
-
-
0031485268
-
The cofinality spectrum of the infinite symmetric group
-
MR 98k:03106
-
Saharon Shelah and Simon Thomas, The cofinality spectrum of the infinite symmetric group, J. Symbolic Logic 62 (1997) 902-916. MR 98k:03106.
-
(1997)
J. Symbolic Logic
, vol.62
, pp. 902-916
-
-
Shelah, S.1
Thomas, S.2
-
10
-
-
34250115881
-
-
(English translation: Algebra and Logic 23 (1984), 385-387.) MR 87d:20058.
-
(English translation: Algebra and Logic 23 (1984), 385-387.) MR 87d:20058.
-
-
-
-
12
-
-
34250111073
-
-
(English translation: Algebra and Logic 24 (1985) 265-268.) MR 87e:20059.
-
(English translation: Algebra and Logic 24 (1985) 265-268.) MR 87e:20059.
-
-
-
-
14
-
-
33846810370
-
-
Simon Thomas, Cofinalities of infinite permutation groups, pp.101-120 in Advances in algebra and model theory (Essen, 1994; Dresden, 1995) Algebra Logic Appl., v.9. MR 2000a:20005.
-
Simon Thomas, Cofinalities of infinite permutation groups, pp.101-120 in Advances in algebra and model theory (Essen, 1994; Dresden, 1995) Algebra Logic Appl., v.9. MR 2000a:20005.
-
-
-
|