-
1
-
-
0034300685
-
Use of lithium-ion batteries in electric vehicles
-
Kennedy B., Patterson D., and Camilleri S., Use of lithium-ion batteries in electric vehicles. J. Power Sources, 2000, 90: 156.
-
(2000)
J. Power Sources
, vol.90
, pp. 156
-
-
Kennedy, B.1
Patterson, D.2
Camilleri, S.3
-
2
-
-
0033185284
-
Fabrication and evaluation of 100 Ah cylindrical lithium ion battery for electric vehicle applications
-
Hyung Y. E., Moon S. I., Yum D. H., et al., Fabrication and evaluation of 100 Ah cylindrical lithium ion battery for electric vehicle applications. J. Power Sources, 1999, 81-82: 842.
-
(1999)
J. Power Sources
, vol.81-82
, pp. 842
-
-
Hyung, Y.E.1
Moon, S.I.2
Yum, D.H.3
-
3
-
-
0037215213
-
Abuse behavior of high-power, lithium-ion cells
-
Spotnitza R., and Franklin J., Abuse behavior of high-power, lithium-ion cells. J. Power Sources, 2003, 113: 81.
-
(2003)
J. Power Sources
, vol.113
, pp. 81
-
-
Spotnitza, R.1
Franklin, J.2
-
4
-
-
0033184702
-
On safety of lithium-ion cells
-
Biensan Ph., Simon B., Peres J. P., et al., On safety of lithium-ion cells. J. Power Sources, 1999, 81-82: 906.
-
(1999)
J. Power Sources
, vol.81-82
, pp. 906
-
-
Biensan, Ph.1
Simon, B.2
Peres, J.P.3
-
5
-
-
0034300686
-
Lithium ion cell safety
-
Tobishima S., Takei K., Sakurai Y., et al., Lithium ion cell safety. J. Power Sources, 2000, 90: 188.
-
(2000)
J. Power Sources
, vol.90
, pp. 188
-
-
Tobishima, S.1
Takei, K.2
Sakurai, Y.3
-
6
-
-
25144518155
-
4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte
-
Wang Q. S., Sun J. H., Yao X. L., et al., 4-isopropyl phenyl diphenyl phosphate as flame-retardant additive for lithium-ion battery electrolyte. Electrochem. Solid-State Lett., 2005, 8(9): A467.
-
(2005)
Electrochem. Solid-State Lett.
, vol.8
, Issue.9
-
-
Wang, Q.S.1
Sun, J.H.2
Yao, X.L.3
-
7
-
-
30744443262
-
Thermal behavior of lithiated graphite with electrolyte in lithium ion batteries
-
Wang Q. S., Sun J. H., Yao X. L., et al., Thermal behavior of lithiated graphite with electrolyte in lithium ion batteries. J. Electrochem. Soc, 2006, 153(2): A329.
-
(2006)
J. Electrochem. Soc
, vol.153
, Issue.2
-
-
Wang, Q.S.1
Sun, J.H.2
Yao, X.L.3
-
8
-
-
4344651351
-
Development of a simulator for both property and safety of a lithium secondary battery
-
Yamauchi T., Mizushima K., Satoh Y., et al., Development of a simulator for both property and safety of a lithium secondary battery. J. Power Sources, 2004, 136: 99.
-
(2004)
J. Power Sources
, vol.136
, pp. 99
-
-
Yamauchi, T.1
Mizushima, K.2
Satoh, Y.3
-
9
-
-
24944472144
-
6/EC + DEC electrolyte with charged electrodes for lithium ion batteries
-
6/EC + DEC electrolyte with charged electrodes for lithium ion batteries. Thermochim. Acta, 2005, 437(1-2): 12.
-
(2005)
Thermochim. Acta
, vol.437
, Issue.1-2
, pp. 12
-
-
Wang, Q.S.1
Sun, J.H.2
Yao, X.L.3
-
10
-
-
0037671511
-
Thermal stability of lithium-ion battery electrolytes
-
Ravdel B., Abraham K. M., Gitzendanner R., et al., Thermal stability of lithium-ion battery electrolytes. J. Power Sources, 2003, 119-121: 805.
-
(2003)
J. Power Sources
, vol.119-121
, pp. 805
-
-
Ravdel, B.1
Abraham, K.M.2
Gitzendanner, R.3
-
12
-
-
3042753355
-
Thermal hazard evaluation of complex reactive substance using calorimeters and Dewar vessel
-
Sun J. H., Li X., Hasegawa K., et al., Thermal hazard evaluation of complex reactive substance using calorimeters and Dewar vessel. J. Therm. Anal. Cal., 2004, 76(3): 883.
-
(2004)
J. Therm. Anal. Cal.
, vol.76
, Issue.3
, pp. 883
-
-
Sun, J.H.1
Li, X.2
Hasegawa, K.3
-
13
-
-
0035449531
-
A study of self-accelerating decomposition temperature (SADT) using reaction calorimetry
-
Sun J. H., Li Y. F., and Hasegawa K., A study of self-accelerating decomposition temperature (SADT) using reaction calorimetry. J. Loss Prevent. Process Ind., 2001, 14: 331.
-
(2001)
J. Loss Prevent. Process Ind.
, vol.14
, pp. 331
-
-
Sun, J.H.1
Li, Y.F.2
Hasegawa, K.3
-
14
-
-
0038746659
-
MRSST a new method to evaluate thermal stability of electrolytes for lithium ion batteries
-
Botte G. G., and Bauer T. J., MRSST a new method to evaluate thermal stability of electrolytes for lithium ion batteries. J. Power Sources, 2003, 119-121: 815.
-
(2003)
J. Power Sources
, vol.119-121
, pp. 815
-
-
Botte, G.G.1
Bauer, T.J.2
-
15
-
-
0035793193
-
The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS
-
Moshkovich M., Cojocaru M., Gottlieb H. E., et al., The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS. J. Electroanal. Chem., 2001, 497: 84.
-
(2001)
J. Electroanal. Chem.
, vol.497
, pp. 84
-
-
Moshkovich, M.1
Cojocaru, M.2
Gottlieb, H.E.3
-
16
-
-
29244480680
-
Study on the kinetics properties of lithium hexafluorophosphate thermal decomposition reaction
-
Wang Q. S., Sun J. H., Lu S. X., et al., Study on the kinetics properties of lithium hexafluorophosphate thermal decomposition reaction. Solid State Ionics, 2006, 177(1-2): 137.
-
(2006)
Solid State Ionics
, vol.177
, Issue.1-2
, pp. 137
-
-
Wang, Q.S.1
Sun, J.H.2
Lu, S.X.3
-
17
-
-
0038010274
-
The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge
-
Sloop S. E., Kerr J. B., and Kinoshita K., The role of Li-ion battery electrolyte reactivity in performance decline and self-discharge. J. Power Sources, 2003, 119-121: 330.
-
(2003)
J. Power Sources
, vol.119-121
, pp. 330
-
-
Sloop, S.E.1
Kerr, J.B.2
Kinoshita, K.3
-
18
-
-
0038009392
-
Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatog-raphy-mass spectroscopy
-
Mogi R., Inaba M., Iriyama Y., et al., Study on the decomposition mechanism of alkyl carbonate on lithium metal by pyrolysis-gas chromatog-raphy-mass spectroscopy. J. Power Sources, 2003, 119-121: 597.
-
(2003)
J. Power Sources
, vol.119-121
, pp. 597
-
-
Mogi, R.1
Inaba, M.2
Iriyama, Y.3
-
19
-
-
0031249861
-
Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging
-
Yoshida H., Fukunaga T., Hazama T., et al., Degradation mechanism of alkyl carbonate solvents used in lithium-ion cells during initial charging. J. Power Sources, 1997, 68: 311.
-
(1997)
J. Power Sources
, vol.68
, pp. 311
-
-
Yoshida, H.1
Fukunaga, T.2
Hazama, T.3
-
20
-
-
0035742299
-
New developments in dimethyl carbonate chemistry
-
Tundo P., New developments in dimethyl carbonate chemistry. Pure Appl. Chem., 2001, 73: 1117.
-
(2001)
Pure Appl. Chem.
, vol.73
, pp. 1117
-
-
Tundo, P.1
-
21
-
-
0001541326
-
Dimethyl carbonate for environmentally benign reactions
-
Ono Y., Dimethyl carbonate for environmentally benign reactions. Pure Appl. Chem., 1996, 68: 367.
-
(1996)
Pure Appl. Chem.
, vol.68
, pp. 367
-
-
Ono, Y.1
-
22
-
-
0033185390
-
Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell
-
Kumai K., Miyashiro H., Kobayashi Y., et al., Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell. J. Power Sources, 1999, 81-82: 715.
-
(1999)
J. Power Sources
, vol.81-82
, pp. 715
-
-
Kumai, K.1
Miyashiro, H.2
Kobayashi, Y.3
-
24
-
-
0037082939
-
Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells
-
Kawamura T., Kimura A., Egashira M., et al., Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. J. Power Sources, 2002, 104: 260.
-
(2002)
J. Power Sources
, vol.104
, pp. 260
-
-
Kawamura, T.1
Kimura, A.2
Egashira, M.3
-
25
-
-
29244490478
-
-
Third ed., High Education Press, Beijing
-
Song S. M., Wang Z. L., and Li W. B., Physical Chemistry, Part B, third ed., High Education Press, Beijing, 1993.
-
(1993)
Physical Chemistry, Part B
-
-
Song, S.M.1
Wang, Z.L.2
Li, W.B.3
|